K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

Vì Om là phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{IOE}=\widehat{IOF}=\dfrac{1}{2}\widehat{EOF}\)

Vì \(\left\{{}\begin{matrix}IE\perp Ox\\IF\perp Oy\end{matrix}\right.\left(gt\right)\Rightarrow\widehat{IEO}=\widehat{IFO}=90^o\)

Xét \(\Delta IOE\) và \(\Delta IOF\) có: \(\left\{{}\begin{matrix}\widehat{IEO}=\widehat{IFO}\left(=90^o\right)\\OI:chung\\\widehat{IOE}=\widehat{IOF}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta IOE=\Delta IOF\left(\text{cạnh huyền - góc nhọn}\right)\)

b) Vì \(\Delta IOE=\Delta IOF\left(cmt\right)\Rightarrow OE=OF\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta EOF\) có: \(OE=OF\left(cmt\right)\)

\(\Rightarrow\Delta EOF\) cân ở O

\(\Rightarrow\widehat{OEF}=\widehat{OFE}\)

Xét \(\Delta EOF\) có:

\(\widehat{EOF}+\widehat{OFE}+\widehat{OEF}=180^o\)

\(\Rightarrow2\widehat{EOI}+2\widehat{OEF}=180^o\\ \Rightarrow\widehat{EOI}+\widehat{OEF}=90^o\)

Gọi \(EF\cap OI\equiv M\)

Xét \(\Delta OME\) có: 

\(\widehat{OEF}+\widehat{EOI}+\widehat{OME}=180^o\\ \Rightarrow90^o+\widehat{OME}=180^o\\ \Rightarrow\widehat{OME}=180^o-90^o=90^o\\ \Rightarrow EF\perp Om\left(\text{đpcm}\right)\)

18 tháng 4 2023

Cho ���^xOy(0∘<���^<180∘)(0<xOy<180)��Om là tia phân giác ���^xOy. Trên tia ��Om lấy điểm I bất kì. Gọi �,�E,F lần lượt là chân đường vuông góc kẻ từ I đến ��Ox và ��Oy. Chứng minh:

a) △���=△���IOE=IOF.

b) ��⊥��EFOm.

Hướng dẫn giải:

loading...

a) Xét △���IOE và △���IOF có

�^=�^=90∘E=F=90 (giả thiết);

��OI cạnh chung;

���^=���^EOI=FOI (��Om là tia phân giác).

Vậy △���=△���IOE

1: Xét ΔOIA vuông tại I và ΔOIB vuông tại I có

OI chung

IA=IB

=>ΔOIA=ΔOIB

=>OA=OB

=>ΔOAB cân tại O

2: OA+AM=OM

OB+BN=ON

mà OA=OB và AM=BN

nên OM=ON

=>ΔOMN cân tại O

Xét ΔOMN có OA/OM=OB/ON

nên AB//MN

 

2 tháng 4 2016

b1 3 tia phân giác trong gặp nhau tại 1 điểm 

boc=125

b2 vì om là tia phân giác nên IE =IF nên tam giác 0ie =oif( cgv ch )

gọi giao điểm của è và om tại h chứng minh tam giác hoe=hò tương tự như câu a

19 tháng 9 2023

Vì Oz là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOz} = \widehat {zOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.120^\circ  = 60^\circ \)

Vì Oz’ là tia phân giác của \(\widehat {yOx'}\) nên \(\widehat {x'Oz'} = \widehat {yOz'} = \frac{1}{2}.\widehat {yOx'} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vì tia Oy nằm trong \(\widehat {zOz'}\) nên \(\widehat {zOz'}=\widehat {zOy} + \widehat {yOz'} =  60^\circ  + 30^\circ  = 90^\circ \)

Vậy \(\widehat {zOy} = 60^\circ ,\widehat {yOz'} = 30^\circ ,\widehat {zOz'} = 90^\circ \)

Chú ý:

2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

19 tháng 9 2023

Vì Oz là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOz} = \widehat {zOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.142^\circ  = 71^\circ \)

Mà \(\widehat {x'Oz}\) và \(\widehat {xOz}\) là 2 góc kề bù nên \(\widehat {xOz} + \widehat {x'Oz} = 180^\circ  \Rightarrow 71^\circ  + \widehat {x'Oz} = 180^\circ  \Rightarrow \widehat {x'Oz} = 180^\circ  - 71^\circ  = 109^\circ \)

Vậy \(\widehat {x'Oz} = 109^\circ \)

giúp ik mn

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Vì \(\widehat {yOt} = 90^\circ  \Rightarrow Oy \bot Ot \Rightarrow Ox \bot Ot\) nên \(\widehat {xOt} = 90^\circ \)

Vì Ov là tia phân giác của \(\widehat {xOt}\) nên \(\widehat {xOv} = \widehat {vOt} = \frac{1}{2}.\widehat {xOt} = \frac{1}{2}.90^\circ  = 45^\circ \)

Vì \(\widehat {vOz} =\widehat {vOx} + \widehat {xOz} = 45^\circ  + 135^\circ  = 180^\circ \) nên Ov và Oz là hai tia đối nhau

Như vậy, các góc \(\widehat {xOv}\) và \(\widehat {yOz}\) là hai góc đối đỉnh vì Ox là tia đối của tia Oy, tia Ov là tia đối của tia Oz