Cho $\widehat{xOy}$, $\left(0^{\circ}<\widehat{x O y}<180^{\circ}\right)$, $Om$ là tia phân giác $\widehat{xOy}$. Trên tia $Om$ lấy điểm $I$ bất kì. Gọi $E, \, F$ lần lượt là chân đường vuông góc kẻ từ $I$ đến $O x$ và $O y$. Chứng minh:
a) $\triangle I O E=\triangle I O F$.
b) $E F \perp O m$.
Vì Om là phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{IOE}=\widehat{IOF}=\dfrac{1}{2}\widehat{EOF}\)
Vì \(\left\{{}\begin{matrix}IE\perp Ox\\IF\perp Oy\end{matrix}\right.\left(gt\right)\Rightarrow\widehat{IEO}=\widehat{IFO}=90^o\)
Xét \(\Delta IOE\) và \(\Delta IOF\) có: \(\left\{{}\begin{matrix}\widehat{IEO}=\widehat{IFO}\left(=90^o\right)\\OI:chung\\\widehat{IOE}=\widehat{IOF}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta IOE=\Delta IOF\left(\text{cạnh huyền - góc nhọn}\right)\)
b) Vì \(\Delta IOE=\Delta IOF\left(cmt\right)\Rightarrow OE=OF\left(\text{2 cạnh tương ứng}\right)\)
Xét \(\Delta EOF\) có: \(OE=OF\left(cmt\right)\)
\(\Rightarrow\Delta EOF\) cân ở O
\(\Rightarrow\widehat{OEF}=\widehat{OFE}\)
Xét \(\Delta EOF\) có:
\(\widehat{EOF}+\widehat{OFE}+\widehat{OEF}=180^o\)
\(\Rightarrow2\widehat{EOI}+2\widehat{OEF}=180^o\\ \Rightarrow\widehat{EOI}+\widehat{OEF}=90^o\)
Gọi \(EF\cap OI\equiv M\)
Xét \(\Delta OME\) có:
\(\widehat{OEF}+\widehat{EOI}+\widehat{OME}=180^o\\ \Rightarrow90^o+\widehat{OME}=180^o\\ \Rightarrow\widehat{OME}=180^o-90^o=90^o\\ \Rightarrow EF\perp Om\left(\text{đpcm}\right)\)
Cho ���^xOy, (0∘<���^<180∘)(0∘<xOy<180∘), ��Om là tia phân giác ���^xOy. Trên tia ��Om lấy điểm �I bất kì. Gọi �,�E,F lần lượt là chân đường vuông góc kẻ từ �I đến ��Ox và ��Oy. Chứng minh:
a) △���=△���△IOE=△IOF.
b) ��⊥��EF⊥Om.
Hướng dẫn giải:a) Xét △���△IOE và △���△IOF có
�^=�^=90∘E=F=90∘ (giả thiết);
��OI cạnh chung;
���^=���^EOI=FOI (��Om là tia phân giác).
Vậy △���=△���△IOE=△IOF (cạnh huyền - góc nhọn).
b) △���=△���△IOE=△IOF (chứng minh trên)
⇒��=��⇒OE=OF (hai cạnh tương ứng).
Gọi �H là giao điểm của ��Om và ��EF.
Xét △���△OHE và △���△OHF, có
��=��OE=OF (chứng minh trên);
���^=���^EOH=FOH (��Om là tia phân giác);
OHOH chung.
Do đó △���=△���△OHE=△OHF (c.g.c)
⇒���^=���^⇒OHE=FHO (hai góc tương ứng)
Mà ���^+���^=180∘OHE+FHO=180∘ nên ���^=���^=90∘OHE=FHO=90∘.
Vậy ��⊥��EF⊥Om.