Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b là các số hữu tỉ ; p là số nguyên tố thỏa mãn: \(a+b\sqrt{p}=0\)
chứng minh a=b=0
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm
p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ
=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0
=>a+b\(\sqrt{p}\)=0
*)b khác 0 =>a=-b\(\sqrt{p}\)
mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)
*)b=0=>b\(\sqrt{p}\)=0=>a+0=0
=>a=0
Vậy a=b=0
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm
p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ
=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0
=>a+b\(\sqrt{p}\)=0
*)b khác 0 =>a=-b\(\sqrt{p}\)
mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)
*)b=0=>b\(\sqrt{p}\)=0=>a+0=0
=>a=0
Vậy a=b=0