K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`\color{blue}\text {#DuyNam}`

`a,` Vì Tam giác `ABC` cân `-> AB=AC,`\(\widehat{B}=\widehat{C}\) 

Xét Tam giác `ABH` và Tam giác `ACH` có:

\(\widehat{B}=\widehat{C}\)

`AB = AC`

`=>` Tam giác `ABH =` Tam giác `ACH (ch-gn)`

`-> HB=HC (2` cạnh tương ứng `)`

`-> H` là trung điểm của `BC`

`b,` Vì Tam giác `ABH =` Tam giác `ACH (a)`

`->`\(\widehat{BAH}=\widehat{CAH}\) `(2` góc tương ứng `)`

`-> AH` là tia phân giác của \(\widehat{BAC}\) 

loading...

16 tháng 7 2016

a/ xét tam giác ABC cân tại A ta có

AH là đường phân giác(gt)

=> AH là đường trung tuyến; AH là đường cao

=>H là trung điểm của BC và AH vuông góc với BC

\(\)

b/ ta có: H là trung điểm của BC

\(\Rightarrow BH=\frac{1}{2}BC\)

\(\Rightarrow BH=6cm\)

xét tam giác ABH vuông tại H ta có

\(AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

\(\Rightarrow AH^2=64\)


\(\Rightarrow AH=8cm\)

ta có

\(S_{ABC}=\frac{AH.BC}{2}\)

\(S_{ABC}=48cm^2\)

c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có

BH=HC(H là trung điểm của BC)

góc MBH=góc NCH (tam giác ABC vuông tại A)

=> tam giác MBH=tam giác NCH (ch-gn)

=> MH=NH (2 cạnh tuong ứng)

cmtt tam giác BGH=tam giác CNH (ch-gn)

=> QH=NH(2 cạnh tương ứng)

mà MH=NH(cmt)

nên QH=MH

=> tam giác GHM cân tại H

\(\)

18 tháng 1 2021

Bạn tự kẻ hình và viết giả thiết nha!

a) Vì tam giác ABC cân tại A 

      => AB = AC

 Xét tam giác ABH ,tam giác ACH có :

     AB = AC (cmt)

     AHB = AHC (=90 độ )(bạn tự đội thêm mũ cho góc)

     AH chung

 => tam giác ABH = tam giác ACH (c.g.c)

=>HB = HC (2 cạnh tương ứng)

b)  Vì tam giác ABH = tam giác ACH (cmb)

    =>BAH = CAH (2 góc tương ứng)

     =>AH là tia phân giác góc BAC

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A

 

17 tháng 11 2018

19 tháng 3 2022

a, Xét tg AHB và tg AHC, có: 

AB=AC(tg cân)

góc AHB= góc AHC(=90o)

AH chung.

=>tg AHB= tg AHC( ch-cgv)

=>BH=HC.

=>H là trung điểm của BC.