K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(pt\Leftrightarrow\left[\left(4x^3-x+3\right)^3-\frac{3}{4}\right]-\left(x^3+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(4x^3-x+3-\sqrt[3]{\frac{3}{4}}\right)\left[\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]-\frac{4x^3+3}{4}=0\left(1\right)\)

Đặt \(A=\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2=0\)

Dễ chứng minh \(A\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2>\frac{1}{2}\)

\(\left(1\right)\Leftrightarrow\left[\left(4x^3+3\right)-\left(x+\sqrt[3]{\frac{3}{4}}\right)\right]A-\frac{4x^3+3}{4}=0\)

\(\Leftrightarrow\left[\left(4x^3+3\right)-\frac{x^3+\frac{3}{4}}{B}\right]A-\frac{4x^3+3}{4}=0\)

\(\Leftrightarrow\left(4x^3+3\right)\left(A-\frac{A}{4B}-\frac{1}{4}\right)=0\)

Với \(B=x^2-\sqrt[3]{\frac{3}{4}}x+\left(\sqrt[3]{\frac{3}{4}}\right)^2\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2\Rightarrow4B>2\)

Ta chứng minh  \(A-\frac{A}{4B}-\frac{1}{4}>0\)

\(\Leftrightarrow A\cdot\frac{4B-1}{4B}-\frac{1}{4}>0\). Do \(4B>2\Rightarrow\frac{4B-1}{4B}>\frac{1}{2};A>\frac{1}{2}\)

Do đó pt có nghiệm duy nhất là \(4x^3+3=0\Leftrightarrow x=-\sqrt[3]{\frac{3}{4}}\)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

\(ĐK:x\ne\frac{-1}{3}\)

\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)

\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2

Vậy...........

6 tháng 5 2016

\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)

\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)

Lấy Logarit cơ số 2 hai vế, ta được :

\(2\left(x-1\right)^2=\left(\log_2105\right)x\)

\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)

\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)

Vậy phương trình đã cho có 2 nghiệm

7 tháng 6 2015

ĐKXĐ

(x+1)(x+3)\(\ne\)0

<=>x+1\(\ne\)0 và x+3\(\ne\)0

<=>x\(\ne\)-1 và x\(\ne\)-3

Phương trình : \(\frac{x}{2\left(x+3\right)}+\frac{x}{2x+2}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x}{2\left(x+3\right)}+\frac{x}{2\left(x+1\right)}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x+1}{2\left(x+1\right)\left(x+3\right)}+\frac{x+3}{2\left(x+1\right)\left(x+3\right)}=\frac{8x}{2\left(x+1\right)\left(x+3\right)}\)

=>x+1+x+3=8x

<=>x+x-8x=-1-3

<=>-6x=-4

<=>x=2/3(thỏa ĐKXĐ)

Vậy S={2/3}

 

\(b,\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)ĐKXĐ : \(x\ne2;\ne-3\)

\(\Leftrightarrow\frac{x^2-9}{\left(x-2\right)\left(x+3\right)}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow x^2-9=5\)

\(\Leftrightarrow x^2=14\)

\(x=\sqrt{14}\)

.....

27 tháng 2 2019

a) \(\left(x+3\right)^2-\left(x-3\right)^2=6x\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=6x\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=6x\Leftrightarrow12x=6x\)\(\Leftrightarrow12x-6x=0\Leftrightarrow6x=0\Leftrightarrow x=0\)

Vậy phương trình có tập nghiệm S = { 0 }

b)\(-ĐKXĐ:\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x+3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-3\end{cases}}\)

- Ta có :  \(\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\Leftrightarrow\frac{x-3}{x-2}-\frac{5}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-5}{\left(x-2\right)\left(x+3\right)}=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(thoaman\right)\\x=-3\left(kothoaman\right)\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 3 }

27 tháng 7 2019

\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)

Giải \(\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\)

\(\Leftrightarrow5.2\left(x+3\right)=7\left(4x-3\right)\)

\(\Leftrightarrow10x+30=28x-21\)

\(\Leftrightarrow10x-28x=-21-30\)

\(\Leftrightarrow-18x=-51\)

\(\Leftrightarrow x=\frac{17}{6}\)

27 tháng 7 2019

sex em ko