CMR:
n.(2n+1)(7n+1) \(⋮\)6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n(n+1)(2n+1)
= n(n+1)(n+2+n-1)
= n(n+1)(n+2)+(n-1)(n+1)n
Ta thấy n(n+1)(n+2) và (n-1)(n+1)n là ba số tự nhiên liên tiếp nên chia hết cho 2 và chia hết cho 3.
Do đó n(n+1)(n+2)+(n-1)(n+1)n chia hết cho 2 và chia hết cho 3
Mà ƯCLN(2; 3) = 1 nên tổng trên chia hết cho tích (2.3) = 6
Suy ra đpcm
Ta có \(n^3-7n=n^3-1-7n+1=\left(n-1\right)\left(n^2+n+1\right)-7n+1\)
\(=\left(n-1\right)\left[n\left(n+1\right)+1\right]-7n+1\)
\(=\left(n-1\right)n\left(n+1\right)+n-1-7n+1\)
\(=\left(n-1\right)n\left(n+1\right)-6n\)
Ta thấy ngay (n-1)n(n+1) là ba số nguyên liên tiếp nên nó chia hết cho 6; 6n cũng chia hết cho 6.
Vậy thì \(\left(n-1\right)n\left(n+1\right)-6n\) chia hết cho 6 hay n3 - 7n chia hết cho 6.
Đặt A= n(n+1)(2n+1)
*) CM A chia hết cho 2
+n chẵn --> n chia hết cho 2--> A chia hết cho 2
+n lẻ -->n+1 chẵn --> n+ 1chia hết cho 2--> A chia hết cho2
Vậy A chia hết cho 2(1)
*)CM A chia hết cho 3
+)n chia hết cho 3--> A chia hết cho 3
+)n chia 3 dư 1--> 2n chia 3 dư 2--> 2n+1 chia hết cho 3 --> A chia hết cho 3
+)n chia 3 dư 2--> n+1 chia hết cho 3 --> A chia hết cho 3
Vậy A chia hết cho 3(2)
Từ (1) và (2) --> A chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau
=> ƯCLN(2n+1;7n+6) = 1
Vậy ƯCLN của 2n+1 và 7n+6 là 1
_HT_
+Nếu n lẻ=>2n+1 chẵn => tích chia hết cho 2
+Nếu n chẵn thì tích chia hết cho 2
=> tích chia hết cho 2
+Nếu n chia hết cho 3=> tích chia hết cho 3
+Nếu n chia 3 dư 1=> 2n chia 3 dư 2 => 2n+1 chia hết cho 3
+Nếu n chia 3 dư 2 => n=3k+2 (k thuộc Z)
=> 7n+1=21k+14+1=21k+15 chia hết cho 3
=> tích chia hết cho 3
vậy tích chia hết cho cả 2 và 3 => tích chia hết cho 6 ( vì (2,3)=1)