K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2023

`3/1.4+3/4.7+3/7.10+...+3/94.97`

`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`

`=1-1/97`

`=96/97`

2 tháng 3 2023

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

5 tháng 8 2015

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

6 tháng 3 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

26 tháng 4 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

mà \(\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.07}< 1\)

vậy..................

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}+\frac{3}{94\cdot97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

\(\Rightarrow\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

Vậy \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

3 tháng 5 2019

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)

\(\Leftrightarrow1-\frac{1}{97}=\frac{96}{97}\)

Do \(\frac{96}{97}< 1\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}< 1\)

Vậy:.............................<1

30 tháng 6 2017

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=1-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

QT
Quoc Tran Anh Le
Giáo viên
15 tháng 12 2017

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)

\(=3\left(1-\dfrac{1}{97}\right)\)

\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)

19 tháng 3 2024

a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\) 

\(\dfrac{-n-a-n}{n.\left(n+a\right)}\)

\(\dfrac{-2n-a}{n.\left(n+a\right)}\)

b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)

\(\dfrac{2007}{2008}\)

c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)

\(\dfrac{96}{97}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\right).\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{97}\right)\)

\(=\frac{1}{3}.\frac{96}{97}\)

\(=\frac{32}{97}\)

học tốt 

23 tháng 8 2019

3A = 3(1/1.4 + 1/4.7 + 1/7.10 + ...... + 1/94.97)

3A=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - ........ - 1/97

3A = 1-1/97

3A = 96/97

A = 32/97

Oke nha bạn

14 tháng 7 2015

a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}\)

\(=\frac{2008}{2009}\)

b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

=\(\frac{96}{97}\)

14 tháng 7 2015

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)  

= 1 - 1/2009 

= 2008/2009

b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97

= 1-  1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97

= 1 - 1/97

= 96/97

18 tháng 5 2020

Giúp mình đi

18 tháng 5 2020

Đặt 2/3 ra ngoài  trong ngoặc còn :

1-1/4+1/4-1/7+...-1/97=96/97

Lấy 2/3 nhân với 96/97 sẽ ra đáp án nhé