tìm đọ dài x,y trong hình vẽ sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD là tia phân giác của ∠BAC
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{x}{5}=\dfrac{5,1}{3}\Leftrightarrow x=8,5\left(cm\right)\)
1: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)
=>x=-48; y=-91
2: x/y=3/4
=>4x=3y
=>4x-3y=0
mà 2x+y=10
nên x=3 và y=4
3: =>7x-3y=0 và x-y=-24
=>x=18 và y=42
4: =>7x-5y=0 và x+y=24
=>x=10 và y=14
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
a) 3x2 – 7x + 2
\(=3x^2-6x-x+2\)
\(=\left(3x^2-6x\right)-\left(x-2\right)\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) a(x2 + 1) – x(a2 + 1)
\(=ax^2+a-\left(a^2x+x\right)\)
\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)
.......?
a) Ta có: \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=x^2a+a-a^2x-x\)
\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)
\(=xa\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(xa-1\right)\)
c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(a.\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow x=\dfrac{18\cdot5}{6}=15\\ \text{Vậy}\text{ }x=15.\)
\(b.\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow x=\dfrac{-21\cdot4}{3}=28\\ \text{ }\text{ }\text{ }\text{ }\text{Vậy }x=28.\)
\(c.\dfrac{x}{4}=\dfrac{21}{28}\Rightarrow x=\dfrac{21\cdot4}{28}=3\\ \text{Vậy }x=3.\)
\(d.\dfrac{-8}{2x}=\dfrac{3}{-9}\Rightarrow x=\dfrac{-8\cdot\left(-9\right)}{3}:2=12\\ \text{Vậy }x=12.\)
\(e.\dfrac{-4}{11}=\dfrac{x}{22}=\dfrac{40}{z}\\ \Rightarrow x=\dfrac{-4\cdot22}{11}=-8\\ \Rightarrow z=\dfrac{22\cdot40}{-8}=-110\\ \text{Vậy }x=-8;z=-110.\)
\(f.\dfrac{-3}{4}=\dfrac{x}{20}=\dfrac{21}{y}\\ \Rightarrow x=\dfrac{-3\cdot20}{4}=-15\\ \Rightarrow y=\dfrac{21\cdot20}{-15}=-28\\ \text{Vậy }x=-15;y=-28.\)
\(g.\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\\ \Rightarrow x=\dfrac{-4\cdot\left(-10\right)}{8}=5\\ \Rightarrow y=\dfrac{-7\cdot\left(-10\right)}{5}=14\\ \Rightarrow z=\dfrac{-7\cdot\left(-24\right)}{14}=12\\ \text{Vậy }x=5;y=14;z=12.\)
\(h.\dfrac{x}{4}=\dfrac{9}{x}\\ \Rightarrow x\cdot x=9\cdot4\\ \Rightarrow x\cdot x=36\\ \Rightarrow x\cdot x=6\cdot6\\ \text{Vậy }\text{cả hai }x=6.\)