Chứng minh 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Đặt ƯCLN(2n+1; 2n+3) = d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2 chia hết cho d
=> d ∈∈ Ư(2) = {1; 2}
Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.
Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Đặt ƯCLN(2n+1; 2n+3) = d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\) Ư(2) = {1; 2}
Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.
Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau
Gọi (2n+1, n+1) = d (d thuộc N*)
⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d
⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d
⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d
⇒1⋮d⇒1⋮d
Mà d thuộc N*
nên d = 1
=> (2n+1, n+1) = 1
=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau (đpcm)
Lời giải:
Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$
Ta có: $2n+1\vdots d; 2n-1\vdots d$
$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$
$\Rightarrow d=\left\{1;2\right\}$
Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)
$\Rightarrow d=1$
Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.
Gọi d là ƯCLN (2n + 1 ; 2n + 3)
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d
=> 2n + 3 - 2n - 1 chia hết cho d
=> 3 - 1 chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2) = {1 ; 2}
Mà 2n + 3 không chia hết cho 2 ; 2n + 1 không chia hết cho 2 => d = 1
=> ƯCLN (2n + 3 ; 2n + 1) = 1
Vậy 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
bai nay ?????????????????????