tìm giá trị lớn nhất của B=\(\frac{\left|x\right|+2004}{-2005}\)????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức đó là \(K=\frac{x+2003}{\left(x+2004\right)^2}\)
Đặt \(x+2003=k_0\)
Lúc đó \(K=\frac{k_0}{\left(k_0+1\right)^2}=\frac{\left(k_0^2+2k_0+1\right)-\left(k_0^2+k_0+1\right)}{k_0^2+2k_0+1}\)
\(=1-\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)
Để K đạt GTLN thì \(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)đạt GTNN
Đặt \(k_1=k_0+1\Rightarrow k_0=k_1-1\)
\(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}=\frac{\left(k_1-1\right)^2+\left(k_1-1\right)+1}{k_1^2}\)
\(=\frac{k_1^2-k_1+1}{k_1^2}=\frac{1}{k_1^2}-\frac{1}{k_1}+1\)
Đặt \(\frac{1}{k_1}=k_2\)thì có \(K=k_2^2-k_2+1=\left(k_2-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
(Dấu "=" xảy ra khi \(k_2=\frac{1}{2}\Rightarrow k_1=2\Rightarrow k_0=1\Rightarrow x=-2002\))
Vậy \(K_{max}=\frac{1}{4}\Leftrightarrow x=-2002\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Co: D lon nhat<=>x/(x+2004)2 lon nhat
<=> (x2+4008x+20042)/x nho nhat
<=> x+4008+20042/x nho nhat
<=>(x+20042/x) + 4008 nho nhat
<=>(x2+20042)/x + 4008 nho nhat
Ta chung minh duoc bai toan phu: a2+b2>= 2ab( chuyen sang duoc: (a-b)^2>=0 - luon dung)
Dau"=" xay ra <=> a=b
=> x2+20042>=4008x
=>(x2+20042)/x>=4008
=> (x2+20042)/x + 4008 >=8016
Dat (x2+20042)/x + 4008=A
Min A= 8016<=> x= 2004
=> Min D= 1/8016 <=> x= 2004
Bai nay can them dieu kien laf x khac 0 thi moi lam theo nhu the nay duoc. Cos j tick minh nhe!
Đặt \(t=\frac{1}{2004y}\)
Bài toán đưa về tìm x để t bé nhất
Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}\)
\(=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\)(1)
Ta thấy : Theo bất đẳng thức Côsi cho 2 số nguyên dương ta có :
\(x^2+2004^2\ge2.2004.x\)
\(\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\)(2)
Dấu ''='' xảy ra khi x=2004
Từ (1) và (2) \(\Rightarrow t\ge4\)
Vậy giá trị bé nhất của \(t=4\)khi \(x=2004\)
Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\)Khi \(x=2004\)
Bạn tham khảo :
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)
\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)
\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)
\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
TH1 : \(a+c=0\)
\(\Rightarrow a=-c\)
\(\Rightarrow c^{2006}=a^{2006}\)
\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)
\(=0\)
CMTT đều có \(P=0\)
Vậy ...
\(C=4,5\cdot\left|2x-0,5\right|-0,25\)
Do \(\left|2x-0,5\right|\ge0\)
=> \(C=4,5\cdot\left|2x-0,5\right|-0,25\ge-0,25\)
Dấu bằng xảy ra khi và chỉ khi \(\left|2x-0,5\right|=0\)hay \(\left|2x-\frac{1}{2}\right|=0\)=> \(2x=\frac{1}{2}\)=> \(x=\frac{1}{2}:2=\frac{1}{4}\)
Vậy Cmin = -1/4 khi x = 1/4
\(D=-\left|3x+4,5\right|+0,75\)
Do \(\left|3x+4,5\right|\ge0\)
=> \(-\left|3x+4,5\right|\le0\)
=> \(D=-\left|3x+4,5\right|+0,75\le0,75\)
Dấu bằng xảy ra khi và chỉ khi \(\left|3x+4,5\right|=0\)=> \(\left|3x+\frac{9}{2}\right|=0\)=> \(3x=-\frac{9}{2}\)=> x = \(-\frac{9}{2}:3=\frac{-9}{6}=\frac{-3}{2}\)
Vậy Dmax = 0,75 khi x = -3/2
\(E=\left|x-2005\right|+\left|x-2004\right|\)
\(=\left|x-2005\right|+\left|2004-x\right|\)
\(\ge\left|x-2005+2004-x\right|=\left|-1\right|=1\)
Vậy \(E\ge1\), E đạt giá trị nhỏ nhất là 1 khi \(2004\le x\le2005\)
Vì IxI\(\ge\) 0
\(\Rightarrow\)IxI + 2004\(\ge\) 2004
\(\Rightarrow\frac{Ix+2004I}{-2005}\le\frac{2004}{-2005}\)
Dấu bằng xảy ra khi x = 0
Vậy GTLN của B là\(\frac{2004}{-2005}\) khi x=0