Cho tam giác ABC có trung tuyến AM cắt phân giác trong CD tại P. Chứng minh rằng:
a/ PC/PD = AB/AD
b/ Biết AB = 5, BC = 4 và AC = 6. Tính PC/PD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P ở đâu ra vậy bạn? bạn viết đúng đề đi. có thể mình giúp bạn được
a) Xét tứ giác ABCE có
M là trung điểm của đường chéo AC(gt)
M là trung điểm của đường chéo BE(B và E đối xứng nhau qua M)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1
Lời giải:
Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:
$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$
$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$
$=1+\frac{AD}{BD}$
Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác
Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$
$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$
Ta có đpcm.
a) Xét ΔAMC và ΔDMB có
\(\widehat{ACM}=\widehat{DBM}\)(hai góc so le trong, AC//BD)
MC=MB(M là trung điểm của BC)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
Do đó: ΔAMC=ΔDMB(g-c-g)
b) Ta có: ΔAMC=ΔDMB(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AB=BD