Cho tam giác ABC có AB < AC. Trên AB, AC lấy điểm E và D sao cho BE = CD. Gọi M, F là trung điểm BC và DE. Đường MP cắt AC, AB lần lượt tại J và S. Chứng minh:
a, Tam giác AJS cân
b, Vẽ phân giác AK Của góc BAC. Chứng minh: MP//AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
a: Xét ΔDEB có
P là trung điểm của DE
Q là trung điểm của BE
Do đó: PQ là đường trung bình của ΔDEB
Suy ra: PQ//DB và \(PQ=\dfrac{DB}{2}\left(1\right)\)
Xét ΔDCB có
N là trung điểm của CD
M là trung điểm của BC
Do đó: NM là đường trung bình của ΔDCB
Suy ra: NM//DB và \(NM=\dfrac{DB}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//PQ và NM=PQ
hay NMQP là hình bình hành
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A