K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có

EB=FC

góc EBH=góc FCK

=>ΔEHB=ΔFKC

=>EH=FK

d: Xét ΔABH và ΔACK có

AB=AC

góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>AH=AK

=>ΔAHK cân tại A

mà AM là đường cao

nên AM là phân giác của góc HAK

e: Xét ΔAHE và ΔAKF có

AH=AK

góc AHE=góc AKF

HE=KF

=>ΔAHE=ΔAKF

 

23 tháng 2 2023

dài

22 tháng 8 2019

8 tháng 1 2022

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

a: Xét ΔABE và ΔACF có

AB=AC
góc ABE=góc ACF

BE=CF

=>ΔABE=ΔACF

=>AE=AF
b: Xét ΔBNE vuông tại N và ΔCMF vuông tại M có

BE=CF

góc BEN=góc CFM

=>ΔBNE=ΔCMF

=>BN=CM

c: góc IBC=góc NBE

góc ICB=góc MCF

góc NBE=góc MCF
=>góc IBC=góc ICB

=>IB=IC

 

30 tháng 12 2016

Mjk tra loi cau a nka

B C M K

Mjk ve hoi xau, pn thong cam nka

Vì tam giác ABM và ACM có: 

M1=M2(đối đỉnh dok pn)

AM=MK(gt)

BM=MC( gt)

=> tam giác ABM=tam giác ACM(c.g.c)

k ve dc tam giac nho nen mjk phai ghi la tam giac lun ak

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

31 tháng 12 2021

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC