K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Đk:\(-1\le x\le3\) (chính là cái bài cho kia)

Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)

Tức là ta cần chứng minh 

\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)

Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh 

\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)

Từ khi \(x+3>0\), ta cần chứng minh  

\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)

Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

26 tháng 8 2020

a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+\left|x-3\right|\)

\(=x+3-\left(x-3\right)\)

\(=x+3-x+3\)

\(=6\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)

\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=\left|x+2\right|-\left|x\right|\)

\(=x+2-\left(-x\right)\)

\(=x+2+x\)

\(=2x+2=2\left(x+1\right)\)

c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)

\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)

\(=\frac{\left|x-1\right|}{x-1}\)

\(=\frac{x-1}{x-1}=1\)

d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)

\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)

\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)

\(=\left|x-2\right|-1\)

\(=-\left(x-2\right)-1\)

\(=-x+2-1\)

\(=-x+1=-\left(x-1\right)\)

22 tháng 11 2021

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

1 tháng 9 2021

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

2 tháng 9 2021

 

thế cho mik hỏi dấu = xảy ra khi nào?

sai nha bạn ơi

NV
6 tháng 7 2020

\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)

\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)

\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)

\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)

\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)

\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)

\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)

\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)

\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)

\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)

a: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

b: ĐKXĐ: (x-4)(x-3)>=0

=>x>=4 hoặc x<=3

c: ĐKXĐ: (x-5)(x-4)>=0

=>x>=5 hoặc x<=4

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

17 tháng 9 2020

Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)

\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)

\(A=\left|x+1\right|+\left|x-2\right|\)

\(A=\left|x+1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)

Đẳng thức xảy ra khi ab ≥ 0

=> ( x + 1 )( 2 - x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)

2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )

=> MinA = 3 <=> \(-1\le x\le2\)