Cho \(\Delta ABC\)cân tại A , kẻ đường trung tuyến BD .Vẽ \(\widehat{DAE}=\widehat{ABD}\)( \(E\in BD\)) , Chứng minh rằng : \(\widehat{DAE}=\widehat{CEB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A(gt)
nên AB=AC
BD là trung tuyến,nên AD=DC
=> S(ABD=S(BDC) (t/c đường trung tuyến)
Ta có:
AD là cạnh đối diện của góc ABD
DC là cạnh đối diện của góc DBC
Do AD=DC
=> góc ABD=góc DBC( quan hệ giữa góc và cạnh đối diện) (1)
=>BD là phân giác của tam giác ABC
=>tam giác ABC cân tại B( t/c tam giác cân)
=> AB=BC
Mà AB=AC (ABC cân tại A)
Từ đó=>BC=AC
=> tam giác ABC đều (2)
Kéo dài AE cắt BC tại H:
góc ABD=góc DAE=góc CAH ( gt) (3)
Từ (1),(3)=>góc DBC=góc CAH
Mặt khác từ (2),suy ra:
AH là trung tuyến,là phân giác của tam giác ABC
Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.
Xét tam giác ABF và tam giác CAH có:
AFB=CHA=90
AB=CA (vì tam giác abc cân tại A)
ABF=CAH (gt)
=>Tam giác ABF=Tam giác CAH (ch-gn)
=>AF=CH (2 cạnh tương ứng) (1)
Xét tam giác ADF và tam giác CDG có:
AFD=CGD=90
AD=CD (vì D là trung điểm của AC)
ADF=CDG (2 góc đối đỉnh)
=>Tam giác ADF=Tam giác CDG (ch-gn)
=>AF=CG (Hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: CH=CG
Xét tam giác CEH và tam giác CEG có:
CH=CG (cmt)
CHE=CGE=90
EC cạnh chung
=>Tam giác CEH=Tam giác CEG (ch-cgv)
=>CEH=CEG (hai góc tương ứng)
Mà CEH là góc ngoài đỉnh E của tam giác AEC
CEG là góc ngoài đỉnh E của tam giác BEC
=>CEH=ECA+EAC và CEG=EBC+ECB
=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)
=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)
Lại có: Tam giác ABC cân tại A =>ACB=ABC
=>ECA+ECB=EBC+EBA (2)
Cộng vế theo vế đẳng thức (1) và (2), ta được:
ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA
=>2ECA+EBA+ECB=2EBC+ECB+EBA
=>2ECA=2EBC
=>ECA=EBC (ĐPCM)
a) Xét 2 tgiac vuông: tgiac CDK và tgiac ADG có:
CD = AD
góc CDK = ADG
suy ra: tgiac CDK = tgiac ADG (ch_gn)
=> CK = AG; góc DCK = góc DAG
Xét tgiac KAC và tgiac GCA có:
CK = AG
góc KCA = góc GAC
cạnh AC chung
suy ra: tgiac KAC = tgiac GCA
=> AK = CG
Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.
Xét tam giác ABF và tam giác CAH có:
AFB=CHA=90
AB=CA (vì tam giác abc cân tại A)
ABF=CAH (gt)
=>Tam giác ABF=Tam giác CAH (ch-gn)
=>AF=CH (2 cạnh tương ứng) (1)
Xét tam giác ADF và tam giác CDG có:
AFD=CGD=90
AD=CD (vì D là trung điểm của AC)
ADF=CDG (2 góc đối đỉnh)
=>Tam giác ADF=Tam giác CDG (ch-gn)
=>AF=CG (Hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: CH=CG
Xét tam giác CEH và tam giác CEG có:
CH=CG (cmt)
CHE=CGE=90
EC cạnh chung
=>Tam giác CEH=Tam giác CEG (ch-cgv)
=>CEH=CEG (hai góc tương ứng)
Mà CEH là góc ngoài đỉnh E của tam giác AEC
CEG là góc ngoài đỉnh E của tam giác BEC
=>CEH=ECA+EAC và CEG=EBC+ECB
=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)
=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)
Lại có: Tam giác ABC cân tại A =>ACB=ABC
=>ECA+ECB=EBC+EBA (2)
Cộng vế theo vế đẳng thức (1) và (2), ta được:
ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA
=>2ECA+EBA+ECB=2EBC+ECB+EBA
=>2ECA=2EBC
=>ECA=EBC
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)