10+17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
Ta có : \(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)
Lại có B = \(\frac{10^{17}-13+13}{10^{17}-13}=1+\frac{13}{10^{17}-13}\)
Nhận thấy 1017 - 8 > 1017 - 13
=> \(\frac{13}{10^{17}-8}< \frac{13}{10^{17}-13}\)
=> \(1+\frac{13}{10^{17}-8}< 1+\frac{13}{10^{17}-13}\)
=> A < B
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Nhận thầy 108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)
=> A < B
b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)
17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)
Nhận thầy 17203 + 1 < 17204 + 1
=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)
=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\)
\(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=\frac{10^{17}-8}{10^{17}-8}+\frac{13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)
\(B=\frac{10^{17}}{10^{17}-3}=\frac{10^{17}-3+13}{10^{17}-3}=\frac{10^{17}-3}{10^{17}-3}+\frac{13}{10^{17}-3}=1+\frac{13}{10^{17}-3}\)
Nhận xét: \(10^{17}-8\frac{13}{10^{17}-3}\Rightarrow1+\frac{13}{10^{17}-8}>1+\frac{13}{10^{17}-3}\Rightarrow A>B\)
\(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=\frac{10^{17}-8}{10^{17}-8}+\frac{13}{10^{17}-8}=2+\frac{3}{10^{17}-8}\)
\(B=\frac{10^{17}}{10^{17}-3}=\frac{10^{17}-3+3}{10^{17}-3}=\frac{10^{17}-3}{10^{17}-3}+\frac{3}{10^{17}-3}=1+\frac{3}{10^{17}-3}\)
Do \(2+\frac{3}{10^{17}-8}>1+\frac{3}{10^{17}-3}\)n\(A>B\)
Phương pháp giải:
Thực hiện phép tính lần lượt từ trái sang phải rồi điền kết quả vào chỗ trống.
Lời giải chi tiết:
17 − 4 − 3 = 10
17 − 7 = 10
10 − 3 − 5 = 2
10 − 8 = 2
10 − 2 − 3 = 5
10 − 5 = 5
\(B=\frac{17}{10}+\frac{17}{40}+\frac{17}{188}+\frac{17}{154}+\frac{17}{238}\)
\(B=\frac{17}{2.5}+\frac{17}{8.5}+\frac{17}{11.8}+\frac{17}{11.14}+\frac{17}{14.17}\)
\(\frac{3}{17}B=\frac{3}{2.5}+\frac{3}{8.5}+\frac{3}{11.8}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(\frac{3}{17}B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(\frac{3}{17}B=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
\(B=\frac{15}{34}:\frac{3}{17}=\frac{15}{34}.\frac{17}{3}=\frac{5}{2}\)
Học tốt!!!
10 + 17
= 17
~~tk nha~~
10+17=27