K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

1/1.3+1/3.5+............+1/x.(x+2) = 50/102

2/1.3+2/3.3+...........+2/x.(x+2) =50/51

1-1/x+2=50/51

x+1/x+2=50/51

(x+1).51=(x+2).50

51x+51=50x+100

51x-50x=100-51

x=49

vay x=49

29 tháng 12 2016

A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)

\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)

\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)

X=16

12 tháng 4 2017

17 - 1= 16

= > x = 16

 tk mình nha

20 tháng 7 2021

ĐK : 51x \(\ge0\Rightarrow x\ge0\)

Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)

Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)

<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)

<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)

<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)

Vậy x = 50/101 

13 tháng 8 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow20\left(x+2\right)=41\)

\(\Leftrightarrow x-2=\frac{41}{20}\)

\(\Leftrightarrow x=\frac{41}{20}+2\)

\(\Leftrightarrow x=\frac{81}{20}\)

13 tháng 8 2019

\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\) 

\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)

a: \(\Leftrightarrow\dfrac{x-214}{86}-1+\dfrac{x-132}{84}-2+\dfrac{x-54}{82}-3=0\)

=>x-300=0

hay x=300

26 tháng 3 2019

Xinloi, t ghi thiếu đề

\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)

26 tháng 3 2019

\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)

Vì \(\left|x+\frac{1}{1.3}\right|\ge0\forall x\)

     \(\left|x+\frac{1}{3.5}\right|\ge0\forall x\)

        ................

       \(\left|x+\frac{1}{97.99}\right|\ge0\forall x\)

(VT: Vế trái; VP: Vế phải)

\(\Rightarrow VT\ge0\Rightarrow VP=50x\ge0\)mà \(50>0\)

\(\Rightarrow x>0\)

\(\Rightarrow x+\frac{1}{1.3}>0\forall x\)

        ..............

      \(x+\frac{1}{97.99}>0\forall x\)(1)

(1) \(\Leftrightarrow x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)

\(\Leftrightarrow49x+\left(\frac{1}{1.3}+...+\frac{1}{97.99}\right)=50x\)

\(\Leftrightarrow50x-49x=\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{97.99}\right)\)

\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(\Leftrightarrow x=\frac{1}{2}\cdot\frac{98}{99}=\frac{49}{99}\)

Vậy....

P/s: Làm bừa :) Ko chắc đúng nhé