K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔIBD co IB=ID

nên ΔIBD cân tại I

a: Xét (O) có

ΔAHM nội tiếp

AH là đường kính

Do đó: ΔAHM vuông tại M

=>HM\(\perp\)AC tại M

Xét (O) có

ΔADH nội tiếp

AH là đường kính

Do đó:ΔADH vuông tại D

=>HD\(\perp\)AB tại D

Xét ΔHAB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HM là đường cao

nên \(AM\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AM\cdot AC\)

=>AD/AC=AM/AB

Xét ΔAMD và ΔABC có

AM/AB=AD/AC
góc MAD chung

Do đó: ΔAMD đồng dạng với ΔABC

=>\(\widehat{AMD}=\widehat{ABC}\)

mà \(\widehat{AMD}+\widehat{DMC}=180^0\)(hai góc kề bù)

nên \(\widehat{DMC}+\widehat{DBC}=180^0\)

=>DMCB là tứ giác nội tiếp

3 tháng 1

a) Chứng minh tam giác ABH vuông tại H và \(DH\perp AB\) rồi dùng hệ thức lượng \(\Rightarrow AD.AB=AH^2\). Tương tự, ta có \(AM.AC=AH^2\). Do đó \(AD.AB=AM.AC\) và theo bổ đề quen thuộc thì tứ giác BCMD nội tiếp. (đpcm)

b) Gọi Q là giao điểm của DM và AI. Khi đó tam giác ABC vuông tại A có trung tuyến AI nên \(IA=IB=IC=\dfrac{BC}{2}\) hay tam giác IBA cân tại I, suy ra \(\widehat{B}=\widehat{DAQ}\).

 Lại có \(\widehat{B}+\widehat{ACB}=90^o\) suy ra \(\widehat{DAQ}+\widehat{ADQ}=90^o\) (do \(\widehat{ADQ}=\widehat{ACB}\) (cmt)). Do đó \(PQ\perp AI\) tại Q. Từ đó dễ dàng chứng minh O là trực tâm tam giác AIP.

 c) Do tứ giác BCMD nội tiếp nên \(PM.PD=PC.PB\) \(\Rightarrow P_{P/\left(O\right)}=P_{P/\left(I\right)}\) \(\Rightarrow\) P nằm trên trục đẳng phương của (O) và (I). Lại có AE chính là trục đẳng phương của (O) và (I) nên A, E, P thẳng hàng. (đpcm)

 d) Ta thấy SO//AB \(\perp AC\) và \(AH\perp BC\) nên O là trực tâm tam giác ASC \(\Rightarrow OC\perp AS\)

 Lại có OC//KR nên \(RK\perp SA\) (đpcm)

3 tháng 1

 Ở bài này chứng minh được \(A\in\left(I\right)\) vì BC là đường kính của (I) và \(\widehat{BAC}=90^o\)

a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

b: Gọi giao của AH với BC là N

=>AH vuông góc BC tại N

góc IEO=góc IEH+góc OEH

=góc IHE+góc OCE

=90 độ-góc OCE+góc OCE=90 độ

=>IE là tiếp tuyến của (O)

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi