tìm n thuộc N biết:
\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+....+\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{3}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3
\(\Rightarrow\) n - 2 \(\in\) Ư(3)
\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}
n \(\in\){5; -1; 3; 2}
c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{3}-\dfrac{1}{30}\)
\(=\dfrac{10}{30}-\dfrac{1}{30}\)
\(=\dfrac{9}{30}\)
=\(\dfrac{3}{10}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\left(x+1\right)^2=324=18^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=18\\x+1=-18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-19\end{matrix}\right.\)
Ta có \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+...+\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{x+1}{324}+\dfrac{1}{x+1}\)
\(\Rightarrow\)\(\dfrac{1}{x+1}-\dfrac{x+1}{324}=0\)
\(\Rightarrow\)\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\Rightarrow\)(x+1).(x+1)=324
\(\Rightarrow\)(x+1)2=324
\(\Rightarrow\)(x+1)2 = 182 = (-18)2
TH1: (x+1)2 = 182
\(\Rightarrow\)x+1 = 18
\(\Rightarrow\)x = 17
TH2: (x+1)2 = (-18)2
\(\Rightarrow\)x+1 = -18
\(\Rightarrow\)x = -19
Vậy x\(\in\)\(\left\{17;-19\right\}\)
Giải:
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
Đk: \(n\ne0;n\ne-1\)
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)
\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)
\(\Leftrightarrow C=\dfrac{n+2}{3n}\)
Vì \(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)
\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)
Vậy ...
Giải:
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
Đk: \(n\ne0;n\ne-1\)
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)
\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)
\(\Leftrightarrow C=\dfrac{n+2}{3n}\)
Vì \(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)
\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)
Vậy ...
a.
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b.
\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{300}{600}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{600}\)
=> x + 1 = 600
x = 600 - 1
x = 599
Vậy x = 599
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{30}\)
\(\Rightarrow n+1=30\)
\(\Rightarrow n=29\)
Vậy n = 29.