K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2023

Từ GT ta lấy tích phân 2 vế cận từ 0 đến 1 ; sẽ được : 

\(\int\limits^1_0f\left(x+1\right)dx+\int\limits^1_03f\left(3x+2\right)dx-\int\limits^1_04f\left(4x+1\right)dx-\int\limits^1_0f\left(2^x\right)dx=\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}\left(1\right)\)

\(\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}=\int\limits^1_03\left(\sqrt{x+2}-\sqrt{x+1}\right)dx\)  = 

\(2\left[\left(x+2\right)\sqrt{x+2}-\left(x+1\right)\sqrt{x+1}\right]\dfrac{1}{0}\)  = \(2+6\sqrt{3}-8\sqrt{2}\left(2\right)\)

Dễ thấy : \(\int\limits^1_0f\left(x+1\right)dx=\int\limits^2_1f\left(t\right)dt=\int\limits^2_1f\left(x\right)dx\)

\(\int\limits^1_03f\left(3x+2\right)dx=\int\limits^5_2f\left(t\right)dt=\int\limits^5_2f\left(x\right)dx\)  (3)

\(\int\limits^1_04f\left(4x+1\right)=\int\limits^5_1f\left(t\right)dt=\int\limits^5_1f\left(x\right)dx\left(4\right)\)

\(\int\limits^1_0f\left(2^x\right)dx=\int\limits^2_1\dfrac{f\left(t\right)dt}{tln2}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(t\right)dt}{t}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}\)  (5)

Thay (2) ; (3) ; (4) ; (5) vào (1) ta được : 

\(\int\limits^2_1f\left(x\right)dx+\int\limits^5_2f\left(x\right)dx-\int\limits^5_1f\left(x\right)dx-\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=2+6\sqrt{3}-8\sqrt{2}\)

\(\Leftrightarrow\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=\left(2+6\sqrt{3}-8\sqrt{2}\right)ln2\)

NV
18 tháng 3 2021

1. Hàm không liên tục tại  \(x=-1\) nên đáp án A sai

2. Hàm liên tục tại \(x=0,5\)

3. Đề thiếu

4. \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=3.\left(-2\right)-5=-11\)

\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=-2a-1\)

Hàm liên tục tại x=-2 khi: 

\(-2a-1=-11\Rightarrow a=-5\)

23 tháng 4 2022

Ta có : \(f'\left(1\right)=f'\left(2\right)=0\) ; \(g\left(x\right)=f\left(x^2+4x-m\right)\) \(\Rightarrow g'\left(x\right)=\left(2x+4\right)f'\left(x^2+4x-m\right)\)

g'(x) = 0 \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\f'\left(x^2+4x-m\right)=0\left(1\right)\end{matrix}\right.\) 

g'(x) có nhiều no nhất \(\Leftrightarrow\left(1\right)\) có nhiều no nhất \(\Leftrightarrow x^2+4x-m=1\) và \(x^2+4x-m=2\) đều có 2 no 

\(x^2+4x-m=1\) có 2 no \(\Leftrightarrow\Delta'=m+5>0\Leftrightarrow m>-5\)

\(x^2+4x-m=2\) có 2 no \(\Leftrightarrow m>-6\)

Vậy m > -5 

Mà m \(\in\left[-2021;2022\right]\) nên m \(\in\left[-4;2022\right]\)

=> Có : 2023 + 4 = 2027 giá trị nguyên của m t/m

7 tháng 3 2021

Mình nghĩ là tìm khẳng định sai chứ, vì b,c,d đều đúng

7 tháng 3 2021

\(DKXD:x\ne\sqrt[3]{4}\approx1,58\in\left(-2;2\right)\)

Vậy thì hàm sẽ gián đoạn trên khoảng \(\left(-2;2\right)\) => đáp án A sai, còn lại tất cả đều đúng

18 tháng 1 2018

14 tháng 11 2018

Chọn A

fXxjlwbZlzMv.png.

Nhân 2 vế của bnFd0EzcrH3t.png với Sa1d8HEiA3uM.png ta được AhQbU9ZfKp8l.png.

Hay QjawkYk6dAYZ.png.

Xét mrje45jPV41Z.png.

Đặt QFfevzfjSEAB.png.

cpaMcrFt0yym.png

Suy ra OY3JS5dsj87z.png.

 

Theo giả thiết OE4BLB3rYVup.png nên Pyg0gyR7C2os.png

sVNQfABwujlG.png.

21 tháng 11 2017

Chọn D.

1 tháng 12 2019