K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2023

\(g’\left( x \right) = \left( {3{x^2} + 1} \right)f’\left( {{x^3} + x – 1} \right)\)

Xét \(g’\left( x \right) = 0 \Leftrightarrow f’\left( {{x^3} + x – 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^3} + x – 1 =  – 1\\{x^3} + x – 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} + x = 0\\{x^3} + x – 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

\(\begin{array}{l}g\left( 0 \right) = f\left( { – 1} \right) + m = 3 + m\\g\left( 1 \right) = f\left( 1 \right) + m =  – 1 + m\end{array}\)

\(\begin{array}{l} \Rightarrow \mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right)\\ \Rightarrow 3 + m =  – 10\\ \Leftrightarrow m =  – 13\end{array}\)

3 tháng 1 2019

Chọn C

17 tháng 4 2019

Chọn D                 

Xét hàm số 

 Ta có  nên 

Vì vậy  khi t = 2  ⇔ x = 1

Mặt khác   Suy ra  khi x = 1

Vậy  ⇔ m = 3

Cách 2: Tác giả: Nguyễn Trọn  g Lễ; Fb: Nguyễn Trọng Lễ.

Phương pháp trắc nghiệm

Chọn hàm y = f(x) = 4 thỏa mãn giả thiết: hàm số y = f(x) liên tục trên  ℝ  có 

Ta có 

Xét hàm số g(x) liên tục trên đoạn [0;2], g'(x) = 0 ⇔ x = 1. Ta có g(0) = 4 + m, g(1) = 5 + m, g(2) = 4 + m

Rõ ràng g(0) = g(2) < g(1) nên 

Vậy 5 + m = 8 => m = 3

17 tháng 4 2017

Chọn C

Xét hàm số g(x) =  f 3 ( x )   -   3 f ( x )  trên đoạn [-1;2]

Từ bảng biến thiên, ta có: 

Và  nên f(x) đồng biến trên [-1;2] 

nên (2) vô nghiệm

Do đó, g'(x) = 0 chỉ có  nghiệm là x = -1 và x = 2

Ta có 

Vậy 

1 tháng 1 2017

9 tháng 11 2017