\(^{x^{20}-4x^{18}=0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x-34) x 15=0
( x-34) =0 : 15
( x-34) =0
x =0 + 34
x =34
b) 18 x ( x-16)=18
( x- 16)=18 : 18
( x-16) =1
x = 16 + 1
x = 17
c) ( x-4).( x-3)=0
x . ( 4-3) =0
x . 0 =0 ( n* . o = 0 )
=> x = n*
a, \(x+18\) = 6 - 2\(x\)
\(x\) + 2\(x\) = 18 - 6
3\(x\) = 12
\(x\) = 4
b, 17 - \(x\) = 7 - 6\(x\)
- \(x\) + 6\(x\) = 7 - 17
5\(x\) = - 10
\(x\) = - 2
c, \(x\) + 15 = 20 - 4\(x\)
\(x\) + 4\(x\) = 20 - 15
5\(x\) = 5
\(x\) = 1
d, 7\(x\) - 4 = 20 + 3\(x\)
7\(x-3x=20+4\)
4\(x\) = 24
\(x\) = 6
e, -12 + \(x\) = 5\(x\) - 20
-12 + 20 = 5\(x\) - \(x\)
4\(x\) = 8
\(x\) = 2
f, 4\(x\) - 18 = \(x\) + 27
4\(x\) - \(x\) = 27 + 18
3\(x\) = 45
\(x\) = 15
a)(x-20)=10
x=30
b)78-4x=54
-4x=-24
x=6
c)3x-54+20=41
3x-34=41
3x=75
x=25
a) 45 - 3x = 15 b) 4x - 20 = 32 c) 2x : 16 = 14 d) 0 : 5x = 0
3x = 45 - 15 4x = 32 + 20 2x = 14 x 16 Vì 0 chia cho bất cứ số nào
3x = 30 4x = 52 2x = 224 cũng bằng 0 nên suy ra x thuộc Z
x = 30 : 3 x = 52 : 4 x = 224 : 2
x = 10 x = 13 x = 112
e) 3240 : 9x = 18 f) [ 1824 - ( 526 + 2x ) ] + 318 =1420 Câu g) tương tự như câu f)
9x = 3240 : 18 1824 - (526 + 2x) = 1420 - 318
9x = 180 1824 - (526 + 2x) = 1102
x = 180 : 90 526 + 2x = 1824 - 1102
x = 20 526 + 2x = 722
2x = 722 - 526
2x = 196
x = 196 : 2
x = 98
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)
ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\), \(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.
bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.
đáp án: Min A= 2
a: ĐKXĐ: x-5>=0
=>x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x-1>=0
=>x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
=>\(-2\sqrt{x-1}=4\)
=>\(\sqrt{x-1}=-2\)(vô lý)
Vậy: Phương trình vô nghiệm
c: ĐKXĐ: x-2>=0
=>x>=2
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)
=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)
=>\(-\sqrt{x-2}=-4\)
=>x-2=16
=>x=18(nhận)
d: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)
=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)
=>\(4\sqrt{x+3}=0\)
=>x+3=0
=>x=-3(nhận)
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
= \(2\sqrt{x-5}=4\)
= \(\sqrt{x-5}=2\)
= \(\left|x-5\right|=4\)
=> \(x-5=\pm4\)
\(x=\pm4+5\)
\(x=9;x=1\)
Vậy x=9; x=1
\(x^{20}-4x^{18}=0\\ < =>x^{18}\left(x^2-4\right)=0\\ < =>x^{18}\left(x-2\right)\left(x+2\right)=0\\ < =>\left[{}\begin{matrix}x^{18}=0\\x-2=0\\x+2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
\(x^{20}-4x^{18}=0\)
\(=>x^{20}=4x^{18}\)
\(=>x^2=4\)
\(=>\left[{}\begin{matrix}x^2=2^2\\x^2=\left(-2\right)^2\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(\)
\(#PaooNqoccc\)