K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

a) \(A=x^{15}+3x^{14}+5\)

\(=x^{14}\left(x+3\right)+5\)

\(=x^{14}.0+5\)

= 5

b) x = -3 => x + 3 = 0

\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(=\left(x^{2006}.0+1\right)^{2007}\)

\(=1^{2007}=1\)

 

 

16 tháng 1 2021

\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)

\(A=x^{14}.\left(x+3\right)+5\)

\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)

\(A=0+5\)

\(A=5\)        \(\text{Vậy }A=5\text{ với x+3=0}\)

\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)

\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)

\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=\left(x^{2006}.0+1\right)^{2007}\)

\(B=\left(0+1\right)^{2007}\)

\(B=1^{2007}\)

\(B=1\)           \(\text{Vậy }B=1\text{ với x=-3}\)

1 tháng 6 2017

\(\left(x+1\right)^{2006}\ge0;\left(y-1\right)^{2008}\ge0\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi (x+1)2006=0;(y-1)2008=0 <=>x+1=0;y-1=0<=>x=-1;y=1

bạn thay vào A mà tính

13 tháng 3 2017

2006

k nha

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

18 tháng 7 2017

trả lời giúp em câu này với nha chị :3636:[12*y -9]=36

29 tháng 7 2017

=36 đó

10 tháng 3 2017

\(x^3+x^2y-2x^2-xy-y^2+3y+x+2006\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+2004\)

= 2004