K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2023

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(P=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(P=1-\dfrac{1}{9}=\dfrac{8}{9}\)

\(\Rightarrow P< \dfrac{8}{9}\)

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{9}-\dfrac{1}{10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

\(\Rightarrow P>\dfrac{2}{5}\)

 

18 tháng 2 2021

\(\dfrac{1}{1\cdot2}>\dfrac{1}{2^2}>\dfrac{1}{2\cdot3},\dfrac{1}{2\cdot3}>\dfrac{1}{3^2}>\dfrac{1}{3\cdot4},...,\dfrac{1}{8\cdot9}>\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\) \(\Rightarrow1-\dfrac{1}{9}>A>\dfrac{1}{2}-\dfrac{1}{10}\) \(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\)

1 tháng 3 2018

Câu 1.8: Giải

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(A>\dfrac{2}{5}\) (1)

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(A< 1-\dfrac{1}{9}\)

\(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)

11 tháng 5 2017

Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}\)

..................

\(\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{5}{10}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{2}{5}\) (1)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}\)

...................

\(\dfrac{1}{9^2}< \dfrac{1}{8\cdot9}\)

\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}\)

\(\Rightarrow\) \(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< 1-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< \dfrac{9}{9}-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) ta được: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

Vậy \(\dfrac{2}{5}< A< \dfrac{8}{9}\).

11 tháng 5 2017

Mà đề phần kết luận sai nhé, nếu \(\dfrac{1}{n^2}\) thì A đâu lớn hơn \(\dfrac{2}{5}\), phải thay \(\dfrac{1}{n^2}\) thành \(\dfrac{1}{9^2}\) nha

AH
Akai Haruma
Giáo viên
18 tháng 9 2018

Lời giải:

a)

\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)

b)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)

\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)

24 tháng 11 2023

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\)

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

=>\(A>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

=>\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

=>\(A>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

6 tháng 3 2023

\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{8}{15}\\ =\dfrac{3\times6}{5\times6}+\dfrac{1\times15}{2\times15}+\dfrac{8\times2}{15\times2}\\ =\dfrac{18}{30}+\dfrac{15}{30}+\dfrac{16}{30}\\ =\dfrac{49}{30}\\ \dfrac{6}{9}+\dfrac{14}{18}-\dfrac{5}{6}\\ =\dfrac{6\times2}{9\times2}+\dfrac{14}{18}-\dfrac{5\times3}{6\times3}\\ =\dfrac{12}{18}+\dfrac{14}{18}-\dfrac{15}{18}\\ =\dfrac{11}{18}\)

\(\dfrac{9}{20}-\dfrac{3}{5}:\dfrac{4}{1}\\ =\dfrac{9}{20}-\dfrac{3}{5}\times\dfrac{1}{4}\\ =\dfrac{9}{20}-\dfrac{3}{20}\\ =\dfrac{6}{20}\\ =\dfrac{3}{10}\)

\(\dfrac{1}{6}+\dfrac{2}{3}\times\dfrac{8}{9}\\=\dfrac{1}{6}+\dfrac{16}{27}\\ =\dfrac{1\times9}{6\times9}+\dfrac{16\times2}{27\times2}\\ =\dfrac{9}{54}+\dfrac{32}{54}\\ =\dfrac{41}{54}.\)