Bài 1: Cho \(\Delta ABC\)\(⊥\)tại A có AB=16 cm, AC=30 cm, Tính tổng các khoảng cách từ trọng tâm G của \(\Delta ABC\)đến các đỉnh của\(\Delta\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AM,BN,CE lần lượt là các đường trung tuyến của ΔABC
=>AM,BN,CE đồng quy tại G
BC=căn 6^2+8^2=10cm
=>AM=5cm
=>AG=10/3cm
AN=8/2=4cm
=>BN=căn 6^2+4^2=2*căn 13(cm)
=>BG=2/3*2căn 13=4/3*căn 13(cm)
AE=6/2=3cm
CE=căn 3^2+8^2=căn 73(cm)
=>CG=2/3*căn 73(cm)
\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{16^2+30^2}\)
\(BC=34\left(cm\right)\)
Ta có: Tam giác ABC vuông tại A
\(MC=\sqrt{AC^2+AM^2}\)
\(MC=\sqrt{30^2+8^2}\)
\(MC=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}\)
\(BD=\sqrt{16^2+15^2}=\sqrt{481}\left(cm\right)\)
Khoảng cách từ trọng tâm G của tam giác là: 2/3
a, T/g AMC= t/g BMD(c-g-c)
b,T/g AMC= t/g BMD(c-g-c) \(\Rightarrow\widehat{DBM}=\widehat{ACM}\) mà chúng ở vị trí so le trong \(\Rightarrow BD\)song song AC
c, Diện tích tam giác ABC là : (3.4):2=6(cm) (1) hay (BC.AM):2(2) ;Áp dụng đlí Py-ta-go vào tam giác ABC ta được BC=5cm (3)
Từ (1);(2);(3) \(\Rightarrow\)5.AM=12 \(\Rightarrow AM=\frac{12}{5}=2,4cm\)
d, Khoảng cách từ đỉnh A đến trong tâm G là \(\frac{2}{3}\)
Hok tốt (Hình dễ tự vẽ nha)
Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).
Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm
Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm
Bài 2:
a) Xét \(\Delta\)ABD và \(\Delta\)ACE:
ADB=AEC=90
BAC:chung
AB=AC(\(\Delta\)ABC cân tại A)
=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)
b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A
c) Dễ thấy: H là trực tâm của tam giác ABC
Mà \(\Delta\)ABC cân tại A
Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC
Hay AH là đường trung trực của tam giác ABC