Cho a+b=2 và a^2+b^2= 20 . Tính giá trị của biểu thức M= a^3 +b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=20\Leftrightarrow\left(a+b\right)^2-2ab=20\Leftrightarrow2^2-2ab=20\Rightarrow ab=-8\)
\(M=a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)=2^3-3.\left(-8\right).2=56\)
a, a x 6 = 3 x 6 = 18
b, a + b = 4 + 2 = 6
c, b + a = 2 + 4 = 6
d, a - b = 8 - 5 = 3
e, m x n = 5 x 9 = 45
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)
\(\Leftrightarrow M=a^2-ab+3ab+b^2\)
\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)
Vậy: Khi a+b=1 thì M=1
M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2
=1-3ab+3ab(1-2ab)+6a^2b^2
=1
Xét \(a+b=2\Rightarrow\left(a+b\right)^2=4\Leftrightarrow a^2+2ab+b^2=4\Leftrightarrow20+2ab=4\)
\(\Leftrightarrow2ab=-16\Leftrightarrow ab=-8\)
Vậy \(M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2.\left[20-\left(-8\right)\right]=20.28=560\)