tìm x biết
\(\left(x+60\right)-160=0\)
\(\left(x-425\right)+317=914\)
\(\left(235-x\right)-81=54\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải theo cách lớp 8
x^2 -1 +2 =0
x^2 +1 =0
x^2 = -1 (vô lý)
Suy ra vô nghiệm
Lớp 6:
(x-1)(x+1) = -2 = 1x(-2)
Mà 1-(-2)=3
(x+1) - (x-1) =2
Suy ra vô nghiệm
b) (x+1) (3-x)=0
Suy ra x+1 = 0 hay 3-x=0
Suy ra x = -1 hay x=3
c) (2-x)^4 = 3^4 hay 2-x = (-3)^4
suy ra 2-x=3 hay 2 - x = -3
x = -1 hay x = 5
d) x^2 + 1 = 0 hay 81-x^2 = 0
x^2 = -1 ( vô lý) nên
81 - x^2 =0
x^2=81
x = 9 hay x= -9
\(\left(x-1\right)\left(x+1\right)+2=0\Rightarrow x^2-1+2=0\) ( Lớp 6 chưa dùng căn thì vô nghiệm )
\(\Rightarrow x^2-1=-2\Rightarrow x^2=\left(-2\right)+1=-1\Leftrightarrow x=\sqrt{-1}\)
\(\left(x+1\right)\left(3-x\right)=0\). Xét 2 trường hợp : \(x+1=0\) và \(3-x=0\)
Với \(x+1=0\Rightarrow x=0-1=-1\) còn \(3-x=0\Rightarrow x=0+3=3\)
\(\left(2-x\right)^4=81=3^4\Rightarrow2-x=3\Leftrightarrow x=2-3=-1\)
TH2 : Với \(\left(2-x\right)^4=\left(-3\right)^4\Rightarrow2-x=-3\Leftrightarrow x=2-\left(-3\right)=5\)
\(\left(x^2+1\right)\left(81-x^2\right)=0\) . Xét 2 trường hợp \(x^2+1=0\) và \(81-x^2=0\)
Với \(x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x=\sqrt{1}\) ( Với lớp 6 thì vô nghiệm )
Với \(81-x^2=0\Rightarrow81=0+x^2=x^2=9^2;\left(-9\right)^2\Rightarrow x=9;-9\)
Dễ thấy (\(\frac{3}{4}\)-81); (\(\frac{3^2}{5}\)-81); (\(\frac{3^3}{6}\)-81);... (\(\frac{3^{2007}}{2010}\)-81) có dạng (\(\frac{3^x}{3+x}\)-81) và x\(\varepsilon\){1;2;3;...2007}.
Nếu x=6 thì \(\frac{3^x}{3+x}\)-81=\(\frac{3^6}{3+6}\)-81=0
=> (\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)=0
Mà |x-30|-6001=(\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)
=>|x-30|-6001=0
=>|x-30|=6001
=>x-30=6001 hoặc x-30=-6001
=>x=6031 hoặc x=-5971
-------------------The end----------------
\(\text{|x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{ |x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^6}{9}-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\left|x-30\right|- 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(3^4-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow|x - 30| - 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...0...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{|x - 30| - 6001 = }0\)
\(\Rightarrow\left|x-30\right|=6001\)
\(\Rightarrow x-30=6001\)hoặc \(x-30=-6001\)
\(\Rightarrow x=6031\)hoặc\(x=-5971\)
Vậy: x= 6031 hoặc x= -5971
(Nói thật thì mình mới lớp 7, đây có phải của lớp 8 không?)
\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\dfrac{\left[\left(x+1\right)+\left(x+99\right)\right].50}{2}=0\)
\(\left(x+50\right).50=0\)
\(x+50=0\)
\(x=-50\)
\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)
TH1: x<1
(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0
=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(5x+55=0\)
=>x=-11(nhận)
TH2: 1<=x<2
Phương trình (1) sẽ trở thành:
\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(7x+53=0\)
=>\(x=-\dfrac{53}{7}\left(loại\right)\)
TH3: 2<=x<3
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)
=>\(11x+45=0\)
=>\(x=-\dfrac{45}{11}\left(loại\right)\)
TH4: 3<=x<4
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)
=>\(-3x+27=0\)
=>x=9(loại)
TH5: 4<=x<5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)
=>\(25x-5=0\)
=>x=1/5(loại)
TH6: x>=5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)
=>35x-55=0
=>x=55/35(loại)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
x đầu tiên = 100
x thứ hai = 1022
x thứ ba = 100
(x+60)-160=0
x+60=0+160
x+60=160
x=160-60=100