K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)

Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)

\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)

Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.

2 tháng 10 2016

giúp mình câu khác với

DD
25 tháng 8 2021

\(\hept{\begin{cases}2x^2+3xy-3y^2=-1\\4x^2-xy=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}36x^2+54xy-54y^2=-18\\4x^2-xy=18\end{cases}}\)

\(\Rightarrow40x^2+53xy-54y^2=0\)

\(\Leftrightarrow\left(40x-27y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}40x=27y\\x=2y\end{cases}}\)

Từ đây bạn rút thế vào một trong hai phương trình ban đầu giải ra nghiệm. 

30 tháng 5 2020

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

30 tháng 7 2018

\(\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\)

Xét \(pt\left(1\right)\Leftrightarrow2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=2x-2\end{matrix}\right.\)

*)\(y=x-1\) thay vao \(pt(2)\) :

\(pt\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=0\end{matrix}\right.\)

*)\(y=2x-2\) thay vao \(pt(2)\):

\(pt\Leftrightarrow\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x^2-2x+5}+2}+\dfrac{1}{\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

30 tháng 7 2018

sai r bạn ơi!