K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a) Ta có: a < b => a + 1 < b + 1

b) Ta có: a < b => a - 2 < b - 2

\(\frac{a^2}{1+a+a^2}\)

\(\frac{1}{1+a}\)

\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)

vì a>b nên  \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)

8 tháng 10 2018

\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)

\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)

Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

8 tháng 8 2016

Áp dụng hằng đẳng thức \(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+....+a^2+a+1\right)\)

để thu gọn biểu thức rồi lập hiệu A - B để so sánh

8 tháng 8 2016

Biết chết liền

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

23 tháng 3 2019

Ta có công thức: \(1+2+3+4+...+n=\frac{n\cdot\left(n+1\right)}{2}\)

Ta có:\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)

\(\Leftrightarrow\frac{\frac{a\left(a+1\right)}{2}}{a}< \frac{\frac{b\left(b+1\right)}{2}}{b}\)

\(\Leftrightarrow\frac{a\left(a+1\right)}{2a}< \frac{b\left(b+1\right)}{2b}\)

\(\Leftrightarrow\frac{a+1}{2}< \frac{b+1}{2}\)

\(\Leftrightarrow a+1< b+1\)

\(\Leftrightarrow a< b\)

6 tháng 4 2020

CR:

8-4=4(cm)

TT:

8x4x8=256(cm3)

Đ/S:256cm3

6 tháng 4 2020

Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1

           b+1/b = b/b + 1/b = 1 + 1/b > 1

      => a-1/a < 1 < b+1/b

   Vậỵ a-1/a < b+1/b

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B