K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Tuy z − y ≠ y − z nhưng (z − y)² = (y − z)²,cho nên 
bạn có thể thay (z − y)² bằng (y − z)² 

P(x,y,z) = (x − y + z)² + (z − y)² + 2(x − y + z)(y − z) 
. . . . . . .= (x − y + z)² + (y − z)² + 2(x − y + z)(y − z) . . . . . .= A² + B² + 2AB 
. . . . . . .= [(x − y + z) + (y − z)]² . . . . . . . . . . . . . . . . . . . . = (A + B)² 
. . . . . . .= (x − y + z + y − z)² 
. . . . . . .= x²

k mk nha mk nhanh nhất

Ta có: x+y+z=0

⇔(x+y+z)2=0⇔(x+y+z)2=0

⇔x2+y2+z2+2xy+2yz+2xz=0⇔x2+y2+z2+2xy+2yz+2xz=0(1)

Ta có: K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2

=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2

=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz

=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)

=x2+y2+z23(x2+y2+z2)=13=x2+y2+z23(x2+y2+z2)=13

Vậy: K=13K=13

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

22 tháng 12 2021

a  tìm số nguyên x biết (x-5).(y-7)=1 
   (x-5).(y-7)=1 = 1.1 = -1.(-1) 
   TH1,
   x-5 = 1, y-7 = 1
   => x = 6, y = 8
   TH2

  x -5 = -1, y - 7 = -1
=> x = 4, y = 6

 

(x-y+z)²+(z-y)²-2(x-y+z)(z-y)

[(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2

(x−y+z+y−z)2(x−y+z+y−z)2

x2

Ta có : HĐT số 2 : \(\left(a-b\right)^2=a^2-2ab+b^2\)

Áp dụng vào bài trên ta có : 

 \(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y+z-x-y\right)^2\)

\(=z^2\)

15 tháng 11 2016

mình mới học lớp 7 thui à

Nếu lớp 8 thì sẽ giúp bạn liền

15 tháng 11 2016
Phân tích mẫu ra hằng đẳng thức.. xong nhân đa thức thành nhân tử thử xem . Ròi rút gọn
16 tháng 11 2016

Xem lại đề đi bạn. Có - 3xyz trên tử không

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)