Rút gọn
(x-y+z)2+(z-y)2+2*(x-y+z)*(y-z)
mọi người giải hẳn ra cho mình nhé, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+z=0
⇔(x+y+z)2=0⇔(x+y+z)2=0
⇔x2+y2+z2+2xy+2yz+2xz=0⇔x2+y2+z2+2xy+2yz+2xz=0(1)
Ta có: K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2
=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2
=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz
=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)
=x2+y2+z23(x2+y2+z2)=13=x2+y2+z23(x2+y2+z2)=13
Vậy: K=13K=13
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
(x-y+z)²+(z-y)²-2(x-y+z)(z-y)
= [(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2
= (x−y+z+y−z)2(x−y+z+y−z)2
= x2
Ta có : HĐT số 2 : \(\left(a-b\right)^2=a^2-2ab+b^2\)
Áp dụng vào bài trên ta có :
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
mình mới học lớp 7 thui à
Nếu lớp 8 thì sẽ giúp bạn liền
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
Tuy z − y ≠ y − z nhưng (z − y)² = (y − z)²,cho nên
bạn có thể thay (z − y)² bằng (y − z)²
P(x,y,z) = (x − y + z)² + (z − y)² + 2(x − y + z)(y − z)
. . . . . . .= (x − y + z)² + (y − z)² + 2(x − y + z)(y − z) . . . . . .= A² + B² + 2AB
. . . . . . .= [(x − y + z) + (y − z)]² . . . . . . . . . . . . . . . . . . . . = (A + B)²
. . . . . . .= (x − y + z + y − z)²
. . . . . . .= x²
k mk nha mk nhanh nhất