Cho tam giác ABC nhọn hai đường cao BE,CF cắt nhau tại H
Chứng minh BH * BE + CF * CH = BC*BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)
=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1)
tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)
=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2)
(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)
b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)
cộng lại ta có đpcm
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CF là đường cao ứng với cạnh AB(gt)
BE cắt CF tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH⊥BC
b) Xét tứ giác BHCK có
HC//BK(gt)
BH//CK(gt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà M là trung điểm của BC(gt)
nên M là trung điểm của HK
hay H,M,K thẳng hàng(đpcm)
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
mà góc AFE+góc BFE=180 độ
nên góc AFE=góc ACB
c: Xét ΔKFB và ΔKCE có
góc KFB=góc KCE(=góc AFE)
góc K chung
=>ΔKFB đồng dạng với ΔKCE
=>KF/KC=KB/KE
=>KF*KE=KB*KC
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
mà góc AFE+góc BFE=180 độ
nên góc AFE=góc ACB
c: Xét ΔKFB và ΔKCE có
góc KFB=góc KCE(=góc AFE)
góc K chung
=>ΔKFB đồng dạng với ΔKCE
=>KF/KC=KB/KE
=>KF*KE=KB*KC
-Xét △BCF và △BAD có:
\(\widehat{ABC}\) là góc chung
\(\widehat{BFC}=\widehat{BDA}=90^0\)
\(\Rightarrow\)△BCF∼△BAD (g-g).
\(\Rightarrow\dfrac{BC}{BA}=\dfrac{BF}{BD}\) (tỉ số đồng dạng)
\(\Rightarrow BF.BA=BC.BD\left(1\right)\)
-Xét △ACD và △BCE có:
\(\widehat{ACB}\) là góc chung
\(\widehat{ADC}=\widehat{BEC}=90^0\)
\(\Rightarrow\)△ACD∼△BCE (g-g)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CD}{CE}\) (tỉ số đồng dạng)
\(\Rightarrow CE.CA=CD.BC\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BF.BA+CE.CA=BD.BC+CD.BC=BC\left(BD+CD\right)=BC.BC=BC^2\)
A B F E D H C
a/
H là trực tâm của tg ABC
\(\Rightarrow AH\perp BC\) (Trong tg 3 đường cao đồng quy tại 1 điểm)
b/
Xét 2 tg vuông ACD và tg vuông BCE có
\(\widehat{ACB}\) chung => tg ACD đồng dạng với tg BCE
\(\Rightarrow\dfrac{CD}{CE}=\dfrac{CA}{CB}\Rightarrow CE.CA=CD.CB\)
xét tam giác ABC có
CF vuông gọc với AB
BE vuông góc với AC
suy ra AH vuông góc với BC ( đường cao thứ ba )