Cho x là số thực dương thỏa x2 +\(\dfrac{1}{x^2}\)=7. Tính GTBT P=x7+\(\dfrac{1}{x^7}\)giải hô vs ạ mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#inclue <bits/stdc++.h>
using namespace std;
double a;
int main()
{
cin>>a;
if (a<=0) cout<<"khong phai";
else cout<<fixed<<setprecision(2)<<a*a;
return 0;
}
a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{x-\sqrt{x}+1}\)
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
1,Ta có
3x+7y=24
<=>3x=24-7y
Vì x là số tự nhiên
=>\(24-7y\ge0\)
<=>\(7y\le24\)
<=>\(y<4\) mà y là số tự nhiên
=>\(y=\left\{0;1;2;3\right\}\)
=>\(x=\left\{....\right\}\)
b,\(x^2-4x+2y-xy+9=0\)
<=>\(\left(x^2-4x+4\right)-y\left(x-2\right)+5=0\)
<=>\(\left(x-2\right)^2-y\left(x-2\right)=-5\)
<=>\(\left(x-2\right)\left(x-2-y\right)=5\)
Đến đây giải theo pp pt nghiệm nguyên.
Nếu mình làm đúng thì tick nha bạn,cảm ơn.
tick tui làm tiếp cho nha.
Thiếu chứng minh điều kiện bằng j bạn ơi