Cho ▲ ABC cân tại A có BC =10cm,AC=40cm,đường phân giác BD
a) Tính độ dài AD,DC
b) Tính độ dài BD
Giups em vs ạ em cần đang cần câu trả lời gấp em c.ơntrước ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
b: \(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
=>CH=25-9=16cm
Xét ΔAHB có AD là phân giác
nên HD/AH=DB/AB
=>HD/12=DB/15
=>HD/4=DB/5=(HD+DB)/(4+5)=9/9=1
=>HD=4cm
Xét ΔAHC có AE là phân giác
nên HE/AH=EC/AC
=>HE/12=EC/20
=>HE/3=EC/5=(HE+EC)/(3+5)=16/8=2
=>HE=6cm
xét tam giác ABC có
BD là tia phân giác góc B(gt)
=> \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (tính chất đường phân giác)
=> \(\dfrac{DA}{DC}=\dfrac{6}{10}=>\dfrac{DA}{DC}=\dfrac{3}{5}=>\dfrac{DA}{3}=\dfrac{DC}{5}\)
mà AC=6cm
áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{6}{8}=0,75\left(cm\right)\)
=> DA=0,75*3=2,25(cm)
c/m tương tự ta có EA=2,25(cm)
có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\left(\dfrac{2,25}{6}=\dfrac{2,25}{6}\right)\)
=> ED//BC ( ta lét đảo)
=> \(\dfrac{AE}{AB}=\dfrac{ED}{BC}=>\dfrac{2,25}{6}=\dfrac{ED}{10}=>ED=3,75\left(cm\right)\)
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)
a: BC=5
Xet ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DB=15/7; DC=20/7
c: \(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=6/8=0,75
=>AD=2,25cm
Xét ΔABC có ED//BC
nên ED/BC=AD/AC
=>ED/10=2,25/6=225/600=3/8
=>ED=3,75cm
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
em chưa học cos ạ có cách nào khác không ạ