Số giá trị nguyên của x thỏa mãn lx^2-5l+l5-x^2l là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-4|=|x+2|
\(\Leftrightarrow\int^{3x-4=x+2}_{3x-4=-x-2}\Leftrightarrow\int^{3x-x=4+2}_{3x+x=4-2}\Leftrightarrow\int^{2x=6=>x=3}_{4x=2=>x=2}\)
vậy x E {2'3}
a: \(A=\dfrac{x^2-8x+16-x^2+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-4x}{\left(x+4\right)\left(x-1\right)}\)
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy x = 0 ; y = 2
Thay x = 0 ; y = 2 vào B
=> B = 2.0 - 5.2 + 7.0.2 = -10
Vậy B = -10
Bài 2:
\(a)\)
\(A=\left|x-2021\right|+5\)
Ta có:
\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)
Dấu '' = '' xảy ra khi:
\(x-2021=0\)
\(\Leftrightarrow x=2021\)
Vậy \(MinA=5\Leftrightarrow x=2021\)
\(b)\)
\(B=\left|x-2\right|+\left|x-5\right|\)
\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)
Dấu '' = '' xảy ra khi:
\(\left(x-2\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow2\le x\le5\)
Vậy \(MinB=3\Leftrightarrow2\le x\le5\)