cho một tam giác abc cận tại A có AB=12cm và chu vi tam giác abc bằng 60cm. hãy so sánh các góc của tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
Ta có : \(\left\{{}\begin{matrix}AB-AC=2\\AB+AC=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2AB=16\\AC=AB-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8cm\\AC=6cm\end{matrix}\right.\)
Mà AB + AC + BC = 25 ( chu vi tam giác bằng 25 cm )
=> BC = 25 - AB - AC = 25 - 14 = 11
Vậy ^A > ^C > ^B
-△ABC∼△HBA (g-g) \(\Rightarrow\dfrac{P_{ABC}}{P_{HBA}}=\dfrac{BC}{BA}=\dfrac{20}{12}=\dfrac{5}{3}\Rightarrow\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Rightarrow AB=\dfrac{3}{5}BC\)
-△ABC vuông tại A có: \(AB^2+AC^2=BC^2\Rightarrow\dfrac{9}{25}BC^2+AC^2=BC^2\Rightarrow AC^2=\dfrac{16}{25}BC^2\Rightarrow AC=\dfrac{4}{5}BC\)
-△ABC∼△HAC (g-g) \(\Rightarrow\dfrac{P_{ABC}}{P_{HAC}}=\dfrac{BC}{AC}=\dfrac{BC}{\dfrac{4}{5}BC}=\dfrac{5}{4}\Rightarrow\dfrac{20}{P_{HAC}}=\dfrac{5}{4}\Rightarrow P_{HAC}=\dfrac{20.4}{5}=16\left(cm\right)\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)
Do đó: AB=8cm; AC=10cm; BC=12cm
=>\(\widehat{C}< \widehat{B}< \widehat{A}\)
b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)
\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
nên \(\widehat{MAB}>\widehat{MAC}\)
Chu vi của tam giác ABC là 21cm \(\Rightarrow AB+AC+BC=21 \Leftrightarrow BC=21-6-7=8 (cm)\)
\(\Rightarrow BC>AC>AB\)
\(\Rightarrow \hat{A} > \hat{B} > \hat{C}\) (Quan hệ giữa góc và cạnh đối diện trong tam giác).
Bài toán 2: Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.
Tam giác ABC cân tại A (gt). => Góc B = Góc C (Tính chất tam giác cân).
Ta có: Tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm (gt).
=> AB = AC = (16 - 4) : 2 = 6 (cm).
Xét tam giác ABC cân tại A:
Ta có: AB > BC (AB = 6 cm; BC = 4cm).
=> Góc C > Góc A.
Vậy trong tam giác ABC có Góc B = Góc C > Góc A.
Bài làm
VÌ chu vi tam giác ABC = AB + BC + CA = 16 cm
Mà Tam giác ABC cân tại A
=> AB = AC
Xét tam giác ABC có:
AB = AC = \(\frac{16-4}{2}\)= \(\frac{12}{2}\)= \(6\)
=> AB = AC > BC
Vì AB đối diện với \(\widehat{C}\)
BC đối diện với \(\widehat{A}\)
AC đối diện với \(\widehat{B}\)
Mà AB = AC > BC
=> \(\widehat{C}=\widehat{B}>\widehat{A}\)
Vậy \(\widehat{C}=\widehat{B}>\widehat{A}\)
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
AB=AC=12cm
BC=60-12-12=36cm
Vì BC>AB+AC
nên Ko có tam giác nào như vậy nha bạn
Ta có: AB=AC=12cm
Cạnh đáy là:
\(60-12-12=36\left(cm\right)\)
Ta có:\(AB=12cm\left(gt\right)\\ AC=12cm\left(cmt\right)\\ BC=36cm\left(cmt\right)\\ AB=AC< BC\\ =>\widehat{A}>\widehat{B}=\widehat{C}\)