K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

b) x(x2-24)=0

=> x=0 hoặc x2-24=0<=>x=0 hoặc x2=24(loại)=>x=0

NV
8 tháng 7 2021

\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)

\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)

\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)

\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\) 

B max ko tồn tại

NV
8 tháng 7 2021

Biểu thức này chỉ có max, ko có min

NV
8 tháng 7 2021

ĐKXĐ: ...

\(A=\dfrac{3x^2-72x+96}{3\left(x^2-4x+4\right)}=\dfrac{28\left(x^2-4x+4\right)-\left(25x^2-40x+16\right)}{3\left(x^2-4x+4\right)}=\dfrac{28}{3}-\dfrac{1}{3}\left(\dfrac{5x-4}{x-2}\right)^2\le\dfrac{28}{3}\)

\(A_{max}=\dfrac{28}{3}\) khi \(5x-4=0\Leftrightarrow x=\dfrac{4}{5}\)

NV
20 tháng 5 2020

ĐKXĐ: ...

- Với \(x=0\) không phải nghiệm

- Với \(x\ne0\)

\(\Leftrightarrow\frac{1}{x+\frac{3}{x}+24}-\frac{1}{x+\frac{3}{x}+25}=-1\)

Đặt \(x+\frac{3}{x}+24=t\)

\(\Leftrightarrow\frac{1}{t}-\frac{1}{t+1}=-1\)

\(\Leftrightarrow t+1-t=-t\left(t+1\right)\)

\(\Leftrightarrow t^2+t+1=0\Leftrightarrow\left(t+\frac{1}{2}\right)^2+\frac{3}{4}=0\)

Pt đã cho vô nghiệm

21 tháng 5 2020

mik làm đc rồi nhưng cũng tick cảm ơn bn

20 tháng 5 2020

ĐK : \(\hept{\begin{cases}x^2+24x+3\ne0\\x^2+25x+3\ne0\end{cases}}\)(@@)

Với x = 0 không phải là nghiệm phương trình 

Với x khác 0 ta có: 

\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)

<=> \(\frac{1}{x+24+\frac{3}{x}}-\frac{1}{x+25+\frac{3}{x}}=-1\)

Đặt: \(x+\frac{3}{x}=t\)

Ta có phương trình ẩn t: \(\frac{1}{t+24}-\frac{1}{t+25}=-1\)(1)

ĐK: \(\hept{\begin{cases}t\ne-24\\t\ne-25\end{cases}}\)

(1) <=> \(\frac{1}{\left(t+24\right)\left(t+25\right)}=-1\)

<=> \(t^2+49t+601=0\) phương trình vô nghiệm.

28 tháng 9 2020

a) \(\sqrt{x^2}=7\)

\(\Leftrightarrow\left|x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

b) \(\sqrt{\left(x-2020\right)^2}=10\)

\(\Leftrightarrow\left|x-2020\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)

28 tháng 9 2020

c) đk: \(x\ge2\)

 \(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)

\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)

\(\Leftrightarrow12\sqrt{x-2}=x+4\)

\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow x^2-136x+304=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)

d) đk: \(x\ge-1\)

 \(\sqrt{25x+25}-2\sqrt{64x+64}=7\)

\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)

\(\Leftrightarrow-11\sqrt{x+1}=7\)

Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)

=> pt vô nghiệm

19 tháng 5 2020

Vì x2 + 24x + 3 \(\approx\) x2 + 25x + 3

Nên x2 + 24x + 3 là dương thì x2 + 25x + 3 dương

x2 + 24x + 3 là âm thì x2 + 25x + 3 âm

nên pt tích này luôn dương

TH 2 pt tích = 0 là ko thể vì hai pt nằm ở mẫu

Còn thắc mắc gì thì hỏi mk :)

19 tháng 5 2020

Để mk giúp cho

\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\) (ĐKXĐ mk ko chắc lắm, chắc x luôn khác 0)

\(\Leftrightarrow\) x(\(\frac{1}{x^2+24x+3}-\frac{1}{x^2+25x+3}\)) = -1

\(\Leftrightarrow\) x(\(\frac{x}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\)) = -1

\(\Leftrightarrow\) \(\frac{x^2}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\) = -1

\(\Leftrightarrow\) (x2 + 24x + 3)(x2 + 25x + 3) = -x2

Vì (x2 + 24x + 3)(x2 + 25x + 3) luôn dương với mọi x nên pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!! (ko bt giờ này gửi cho bn có kịp ko, đây là cách của mk, bn có thể tham khảo :) )

27 tháng 9 2021

\(sin^23x-cos^24x=sin^25x-cos^26x\)

\(\Leftrightarrow2sin^23x-2cos^24x=2sin^25x-2cos^26x\)

\(\Leftrightarrow2sin^23x-1+1-2cos^24x=2sin^25x-1+1-2cos^26x\)

\(\Leftrightarrow-cos6x-cos8x=-cos10x-cos12x\)

\(\Leftrightarrow cos6x-cos12x+cos8x-cos10x=0\)

\(\Leftrightarrow sin9x.sin6x+sin9x.sin4x=0\)

\(\Leftrightarrow sin9x.\left(sin6x+sin4x\right)=0\)

\(\Leftrightarrow2sin9x.sin5x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin9x=0\\sin5x=0\\cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{9}\\x=\dfrac{k\pi}{5}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

17 tháng 7 2017

a) x^2 + 2x - 35 = 0

<=> (x - 5)(x + 7) = 0

<=> x = 5 hoặc x = - 7

b) 4x^2 - 12x - 27 = 0

<=> (2x - 9)(2x + 3) = 0

<=> x = 4,5 hoặc x = - 1,5

c) 9x^2 + 24x + 7 = 0

<=> (3x + 1)(3x + 7) = 0

<=> x = - 1/3 hoặc x = - 7/3

d) x^2 + y^2 - 4x + 6y + 13 = 0

<=> (x - 2)^2 + (y + 3)^2 = 0

<=> x = 2 và y = - 3

e) 25x^2 - 10x - 24 = 0

<=> (5x - 6)(5x + 4) = 0

<=> x = 1,2 hoặc x = - 0,8

17 tháng 7 2017

mình cảm ơn bạn rất nhiều

\(25x^2+90x+81=\left(5x+9\right)^2\)

\(64x^2-48x+9=\left(8x-3\right)^2\)