Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(A=\dfrac{3x^2-72x+96}{3\left(x^2-4x+4\right)}=\dfrac{28\left(x^2-4x+4\right)-\left(25x^2-40x+16\right)}{3\left(x^2-4x+4\right)}=\dfrac{28}{3}-\dfrac{1}{3}\left(\dfrac{5x-4}{x-2}\right)^2\le\dfrac{28}{3}\)
\(A_{max}=\dfrac{28}{3}\) khi \(5x-4=0\Leftrightarrow x=\dfrac{4}{5}\)
1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)
\(maxP=18\Leftrightarrow x=-3\)
2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)
\(maxQ=5\Leftrightarrow x=1\)
3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)
\(maxA=6\Leftrightarrow x=2\)
4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)
\(maxB=84\Leftrightarrow x=-6\)
2) A= -9x2 - 18x + 24
=-9x2-18x-9+33
=-(9x2+2.3.3+9)+33
=-(3x+3)2+33\(\le\)33 ( vì -(3x+3)\(\le\)0 )
dấu = xảy ra khi:
3x+3=0
<=>3x=-3
<=>x=-1
vậy GTLN của A là 33 tại x=-1
B=-2x^2 - 5x
=-2(x2+-5/2x)
=-2(x2+2x.5/4+25/16-25/16)
=-2(x2+2x.5/4+25/16)+25/8
=-2(x+5/4)2+25/8\(\le\)25/8 ( vì -2(x+5/4)2\(\le\)0)
dấu = xảy ra khi:
x+5/4=0
<=>x=-5/4
vậy GTLN của B là 25/8 tại x=-5/4
a)\(-x^2-x+2\)
\(=-\left(x^2+x-2\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{7}{4}\right)\)
\(=-\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\le\frac{7}{4}.Với\forall x\in Z\)
Dấu "=" xảy ra khi
\(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy Max = 7/4 <=> x = -1/2
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)
\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)
\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)
\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\)
B max ko tồn tại