So sánh phân số bằng 3 cách :
A= 10\(^8\)+ 1 / 10\(^9\)+ 1
B = 10\(^9\)+ 1/ 10\(^{10}\)+ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngoài đẹp hơn thì chẳng có gì cả
Còn lag hơn và bất tiện hơn
a: 7/8>7/10
b: 16/5>16/7
c: 8/7>1
d: 15/11>1
e: 4/9<1<9/4
f: 11/10>1>10/11
A= 1/3+1/6+1/10+...+1/561
= 2. (1/6+1/12+1/20+...+1/1122)
= 2. [1/(2.3) + 1/(3.4) + 1/(4.5) +...+1/(33.34)]
= 2. ( 1/2 - 1/3 +1/3 - 1/4 + 1/4 - 1/5 +...+ 1/33 - 1/34 )
=2. (1/2 - 1/34)
=2. 8/17
=16/17
Vì 16/17 > 16/18 = 8/9 -> A > 8/9
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{561}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{1122}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{33.34}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{33.34}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{33}-\frac{1}{34}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{34}\right)\)
\(A=2.\left(\frac{17-1}{34}\right)\)
\(A=2.\frac{8}{17}\)
\(A=\frac{16}{17}>\frac{16}{18}=\frac{8}{9}\)
\(\Rightarrow A>\frac{8}{9}\)
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B
a; Cách một:
\(\dfrac{2}{9}\) = \(\dfrac{2\times2}{9\times2}\) = \(\dfrac{4}{18}\) < \(\dfrac{4}{10}\) Vậy \(\dfrac{2}{9}\) < \(\dfrac{4}{10}\)
\(\dfrac{4}{9}\) = \(\dfrac{4\times3}{9\times3}\) = \(\dfrac{12}{27}\); \(\dfrac{6}{10}\) = \(\dfrac{6\times2}{10\times2}\) = \(\dfrac{12}{20}\)
Vì \(\dfrac{12}{27}\) < \(\dfrac{12}{20}\) vậy \(\dfrac{4}{9}\) < \(\dfrac{12}{20}\)
\(\dfrac{3}{8}\) = \(\dfrac{3\times4}{8\times4}\) = \(\dfrac{12}{24}\); \(\dfrac{4}{7}\) = \(\dfrac{4\times3}{7\times3}\) = \(\dfrac{12}{21}\)
Vậy \(\dfrac{3}{8}\) < \(\dfrac{4}{7}\)
\(\dfrac{5}{9}\) = \(\dfrac{5\times7}{9\times7}\) = \(\dfrac{35}{63}\); \(\dfrac{7}{10}\) = \(\dfrac{7\times5}{10\times5}\) = \(\dfrac{35}{50}\)
Vì \(\dfrac{35}{63}\) < \(\dfrac{35}{50}\) vậy \(\dfrac{5}{9}\) < \(\dfrac{7}{10}\)
Cách hai:
a; \(\dfrac{2}{9}\) = \(\dfrac{2\times10}{9\times10}\) = \(\dfrac{20}{90}\); \(\dfrac{4}{10}\) = \(\dfrac{4\times9}{10\times9}\) = \(\dfrac{36}{90}\)
Vì \(\dfrac{20}{90}\) < \(\dfrac{36}{90}\) vậy \(\dfrac{2}{9}\) < \(\dfrac{4}{10}\)
b; \(\dfrac{4}{9}\) = \(\dfrac{4\times10}{9\times10}\) = \(\dfrac{40}{90}\); \(\dfrac{6}{10}\) = \(\dfrac{6\times9}{10\times9}\) = \(\dfrac{54}{90}\)
Vì \(\dfrac{40}{90}\) < \(\dfrac{54}{90}\) vậy \(\dfrac{4}{9}\) < \(\dfrac{6}{10}\)
c; \(\dfrac{3}{8}\) = \(\dfrac{3\times7}{8\times7}\) = \(\dfrac{21}{56}\); \(\dfrac{4}{7}\) = \(\dfrac{4\times8}{7\times8}\) = \(\dfrac{32}{56}\)
Vì \(\dfrac{21}{56}\) < \(\dfrac{32}{56}\) vậy \(\dfrac{3}{8}\) < \(\dfrac{4}{7}\)
d; \(\dfrac{5}{9}\) = \(\dfrac{5\times10}{9\times10}\) = \(\dfrac{50}{90}\); \(\dfrac{7}{10}\) = \(\dfrac{7\times9}{10\times9}\) = \(\dfrac{63}{90}\)
Vì \(\dfrac{50}{90}\) < \(\dfrac{63}{90}\) vậy \(\dfrac{5}{9}\) < \(\dfrac{7}{10}\)
2 cách đc ko hả bn
mình chỉ làm được 2 cách thôi một cách mình chưa nghĩ ra