K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2023

\(a,\left\{{}\begin{matrix}2x-y=1\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4x-2y=2\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}7x=7\\2x-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\2.1-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;1\right)\)

\(b,\left\{{}\begin{matrix}4x+3y=-1\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4.2x+3.2y=-1.2\\3.3x-2.3y=2.3\end{matrix}\right.\\ =>\left\{{}\begin{matrix}8x+6y=-2\\9x-6y=6\end{matrix}\right.\\ =>\left\{{}\begin{matrix}17x=4\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\dfrac{4}{17}\\y=-\dfrac{11}{17}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{4}{17};-\dfrac{11}{17}\right)\)

4 tháng 7 2024

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

20 tháng 9 2021

a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

NV
8 tháng 1 2024

e.

\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

f.

\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)

NV
8 tháng 1 2024

a.

\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

13 tháng 1 2021

giúp mình nhé

10 tháng 1 2024

loading...

15 tháng 11 2017

(Các phần giải thích học sinh không phải trình bày).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x ở 2 pt bằng nhau nên ta trừ từng vế của 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân cả hai vế của pt 2 với 2 để hệ số của x bằng nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x bằng nhau nên ta trừ từng vế của 2 pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế hai phương trình).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 4 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên ta cộng từng vế 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

10 tháng 8 2018

(Các phần giải thích học sinh không phải trình bày).

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân 2 vế pt 1 với 3; nhân pt 2 với 2 để hệ số của y đối nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (hệ số của y đối nhau nên ta cộng từ vế 2 pt)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 2 để hệ số của y đối nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( lấy vế cộng vế hai phương trình)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 2 với 3 để hệ số của y bằng nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Trừ từng vế hai phương trình)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình 0x = 0 nghiệm đúng với mọi x.

Vậy hệ phương trình có vô số nghiệm dạng Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (x ∈ R).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

a: =-2x^2y^3z^2

Hệ số: -2

bậc: 7

b: =-1/3x^3y^3

hệ số: -1/3

bậc: 6

c: =-1/2x^6y^5

hệ số: -1/2

bậc: 11

d: =-2/3x^3y^4

hệ số: -2/3

bậc: 7

e: =3/4x^3y^4

hệ số:3/4

bậc: 7