Cho tam giác ABC vuông tại A có B=60độ.Vẽ tia Cx vuông góc BC vfa lấy CE=CA(E và A cùng thuộc nửa mặt phẳng bờ BC).trên tia đối của tia BC lấy điểm F sao cho BF=BA.C/m:
a,tgACE đều
b,E,A,F thảng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Có 4 pp chứng minh tam giác đều :
Phương pháp 1 : CM Δ có 3 cạnh bằng nhau
Phương pháp 2 : CM Δ có 3 góc bằng nhau
Phương pháp 3 : CM Δ cân có 1 góc = 60°
Phương pháp 4 : CM Δ cân tại 2 đỉnh
=> Pn dựa vào đó làm câu a nha !
* Có nhìu cách để CM thẳng hàng :
1. CM 2 đoạn thẳng song song
2. CM tia phân giác
3. CM 2 góc đối đỉnh
4. CM 2 góc kề bù ( từ đó suy ra 180° )
............................................................................................................................................................................................
=> Pn dựa vào đó làm câu b
Pn **** ủng hộ mình nha !
1, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)
=> 60o + ACB = 90o => ACB = 30o
Vì Cx ⊥ BC (gt) => xCA + ACB = 90o => xCA + 30o = 90o => xCA = 60o
Xét △CAE có: CE = CA (gt) => △CAE cân tại C mà xCA = 60o (cmt) => △CAE đều
2, Vì △CAE đều (cmt) => CAE = 60o
Ta có: CBA + ABF = 180o (2 góc kề bù)
=> 60o + ABF = 180o => ABF = 120o
Xét △BAF có: AB = BF (gt) => △BAF cân tại B => BAF = (180o - ABF) : 2 = (180o - 120o) : 2 = 60o : 2 = 30o
Ta có: CAE + CAB + BAF = 60o + 90o + 30o = 180o => EAF = 180o
=> 3 điểm E, A, F thẳng hàng
Ai tk mình đi.mình bị âm nhiều quá nè!