CHo tam giác ABC nhọn. Hai đường cao BD, CE cắt nhau tại O. Trên các cạnh OB, OC lấy M, N sao cho góc AMC= góc BNA= 90.
CMR: a) AM^2= AD.AC
b)Tam giác AMN cân.
Giúp mình với!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE
Xet ΔAMC vuông tại M có MD là đường cao
nên AD*AC=AM^2
Xét ΔANB vuông tại N có NE là đường cao
nên AE*AB=AN^2
=>AN=AM
=>ΔAMN cân tại A
a, xét tam giác ADI và tam giác AIC có : ^IAD chung
^ADI = ^AIC = 90
=> tam giác ADI đồng dạng tg AIC (g-g)
=> AI/AD = AC/AI (đn)
=> AI^2 = AD.AC
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
3: ΔAMC vuông tại M có MD vuông góc AC
nên AD*AC=AM^2
ΔANB vuông tại N có NE vuông góc AB
nên AE*AB=AN^2
=>AM=AN
tam giác AMC vuông tại M có MD là đường cao \(\Rightarrow AM^2=AD.AC\left(1\right)\)
tam giác ANB vuông tại N có NE là đường cao \(\Rightarrow AN^2=AE.AB\left(2\right)\)
Xét \(\Delta AEC\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AEC=\angle ADB=90\end{matrix}\right.\)
\(\Rightarrow\Delta AEC\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AC.AD\left(3\right)\)
Từ (1),(2),(3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A
ủa \(\widehat{AMB}=\widehat{ANC}\) rồi thì △AMN cân rồi cần gì phải đi c/m
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
\(\Leftrightarrow AD\cdot AC=AE\cdot AB\)
\(\Leftrightarrow AM^2=AN^2\)
=>AM=AN
hay ΔAMN cân tại A
Áp dụng HTL tam giác AMC vuông tại M và ANB vuông tại N có
\(\left\{{}\begin{matrix}AM^2=AD\cdot AC\left(1\right)\\AN^2=AE\cdot AB\left(2\right)\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\widehat{AEC}=\widehat{ADB}=90^0\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEC\sim\Delta ADB\left(g.g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AE\cdot AB=AC\cdot AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow AM^2=AN^2\Rightarrow AM=AN\\ \RightarrowĐpcm\)
Trong t/g vuông ANB có NE là đường cao: AN^2 = AE.AB
Trong t/g vuông AMC có MD là đường cao: AM^2 = AD.AC
Mà t/g ABD ~ t/g ACE (g.g) nên AB/AC = AD/AE <=> AB.AE = AC.AD
=> AN^2 = AM^2 <=> AN = AM