K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

chào mọi người nha mình là Thành rất vui khi gặp các bạn

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

a) Xét ΔMAB và ΔMKC có 

MA=MK(gt)

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMKC(c-g-c)

3 tháng 8 2017

a) do Cx //AB mà IE vg vs  AB(gt) nên IE vg vs CD (vì D thuộc Cx)

xét tg BME vầ tg CMI có: BEM=CIM=90 ; BM=CM(vì AM là đg trung tuyến) ; BME=CMI(đ.đ)

=>tg BME=tg CMI(ch-gn)=>ME=MI(2 cạnh t/ ư)=> M là t/đ của EI

b)do EI vg vs Dc(cmt) và I lf t/đ của DC(gt)=> EI là đg trung trực của DC,mà M thuộc EI nên MD=MC(ĐL)=.tg MCD cân tại M=>MDC=MCD(1)

mặt khác: EBM=ICM(vì tg BEM=tg CIM)(2)

từ (1), (2)=>EBM=MDC, mà EPM=MDC(vì CD//AB) nên EBM=EPM=>tg BMP cân tại M

c)xét tg BEID có:  BE=DI(cùng =CI) và BE//DI(vì AB//CD, E thuộc AB, I thuộc DC)

=>tg BEID là hbh=>EI//BD. mà DC vg vs EI(cmt) nên DC vg vs BD

AK//ME

=>AKME là hình thang

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABN$ và 3 điểm $E,I,M$ thẳng hàng thì:
$\frac{EA}{EB}.\frac{IB}{IN}.\frac{MN}{MA}=1$

$\Leftrightarrow \frac{EA}{EB}.\frac{MN}{MA}=1$

$\Leftrightarrow \frac{EA}{EB}=\frac{MA}{MN}(1)$

Tương tự với tam giác $ACN$ với $F, K,M$ thẳng hàng:

$\frac{FA}{FC}=\frac{MA}{MN}(2)$

Từ $(1); (2)\Rightarrow \frac{EA}{EB}=\frac{FA}{FC}$

Theo định lý Talet đảo thì $EF\parallel BC$ (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Hình vẽ: