K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2023

*Mấu chốt bài này là c/m 5 điểm M,A,I,O,B nằm trên cùng 1 đg tròn.

- Ta có: △OAM vuông tại A, △OBM vuông tại B.

\(\Rightarrow\)△OAM, △OBM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)AMBO nội tiếp đường tròn đường kính OM (1).

- Ta có AC//EF \(\Rightarrow\widehat{ACB}=\widehat{MIB}\) (2 góc so le trong).

- Trong (O) có:

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB.

\(\widehat{MAB}\) là góc tạo bởi tia tiếp tuyến MA và dây cung AB.

\(\Rightarrow\widehat{ACB}=\widehat{MAB}\)

\(\Rightarrow\widehat{MAB}=\widehat{MIB}\). Do đó AIBM nội tiếp (2). (2 góc cùng nhìn 1 cạnh bằng nhau).

\(\left(1\right),\left(2\right)\Rightarrow\)A,M,B,O,I cùng nằm trên đường tròn đường kính OM.

\(\Rightarrow\)△OIM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)△OIM vuông tại I nên OI vuông góc với EF tại I.

Trong (O): EF là dây cung, OI là 1 phần đường kính, \(OI\perp EF\) tại I..

\(\Rightarrow\)I là trung điểm EF (đpcm).

 

26 tháng 1 2023

Hình vẽ:

loading...

26 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm tren đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

31 tháng 12 2021

làm dùm mình câu b đi

8 tháng 11 2017

Bạn vẽ hình đi mình làm cho

8 tháng 11 2017

mình cần bài này gấp cam on bạn nhiều lắm mình vẽ tượng trung thôi nhưng kiểu như v

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB^2=AM*AN

a: Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của CB

b) Xét tứ giác OMEC có

\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối

\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xét ΔAMB và ΔACM có 

\(\widehat{AMB}=\widehat{ACM}\)

\(\widehat{MAB}\) chung

Do đó: ΔAMB∼ΔACM

Suy ra: AM/AC=AB/AM

hay \(AM^2=AB\cdot AC\)

b: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp(1)

Xét tứ giác AHON có 

\(\widehat{AHO}+\widehat{ANO}=180^0\)

Do đó:AHON là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn

hay AMHN là tứ giác nội tiếp