Từ điểm M nằm ngoài đường tròn (O;R).Vẽ tiếp tuyến MA, MB và cát tuyến MEF với đường tròn (O).(A, B là 2 tiếp điểm, ME<MF, tia MF nằm giữa hai tia Ma, MO).Dây AC song song EF. Gọi I là giao điểm BC và EF.cm I là trung điểm EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm tren đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
mình cần bài này gấp cam on bạn nhiều lắm mình vẽ tượng trung thôi nhưng kiểu như v
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB^2=AM*AN
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của CB
b) Xét tứ giác OMEC có
\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối
\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét ΔAMB và ΔACM có
\(\widehat{AMB}=\widehat{ACM}\)
\(\widehat{MAB}\) chung
Do đó: ΔAMB∼ΔACM
Suy ra: AM/AC=AB/AM
hay \(AM^2=AB\cdot AC\)
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AHON có
\(\widehat{AHO}+\widehat{ANO}=180^0\)
Do đó:AHON là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn
hay AMHN là tứ giác nội tiếp
*Mấu chốt bài này là c/m 5 điểm M,A,I,O,B nằm trên cùng 1 đg tròn.
- Ta có: △OAM vuông tại A, △OBM vuông tại B.
\(\Rightarrow\)△OAM, △OBM nội tiếp đường tròn đường kính OM.
\(\Rightarrow\)AMBO nội tiếp đường tròn đường kính OM (1).
- Ta có AC//EF \(\Rightarrow\widehat{ACB}=\widehat{MIB}\) (2 góc so le trong).
- Trong (O) có:
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB.
\(\widehat{MAB}\) là góc tạo bởi tia tiếp tuyến MA và dây cung AB.
\(\Rightarrow\widehat{ACB}=\widehat{MAB}\)
\(\Rightarrow\widehat{MAB}=\widehat{MIB}\). Do đó AIBM nội tiếp (2). (2 góc cùng nhìn 1 cạnh bằng nhau).
\(\left(1\right),\left(2\right)\Rightarrow\)A,M,B,O,I cùng nằm trên đường tròn đường kính OM.
\(\Rightarrow\)△OIM nội tiếp đường tròn đường kính OM.
\(\Rightarrow\)△OIM vuông tại I nên OI vuông góc với EF tại I.
Trong (O): EF là dây cung, OI là 1 phần đường kính, \(OI\perp EF\) tại I..
\(\Rightarrow\)I là trung điểm EF (đpcm).
Hình vẽ: