cho x/y=y/z=z/x và x+y+z không bằng 0 tính x^3*z^6/y^9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)
\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Ta chứng minh bổ đề sau
\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được
\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)
Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:
\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)
Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:
\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)
\(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)
Tương tự: \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)
Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)
Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`
Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`
Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`
Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)
\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)
Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)
\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)
Mà \(x+y+z=0\Leftrightarrow x=-y-z\)
\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)
Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)
Cộng vế theo vế
\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)
Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Thế vào \(P\)
\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Đặt x/y=y/z=z/x=k
=>x=yk; y=zk; z=xk
=>x=yk; y=xk*k=xk^2; z=xk
=>x=x*k^3; y=xk^2; z=xk
=>k=1
\(\dfrac{x^3\cdot z^6}{y^9}=\dfrac{x^3\cdot k^9\cdot x^6\cdot k^6}{x^9\cdot k^{18}}=\dfrac{1}{k^3}\)=1