K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn Tiểu Tôm Béo ơi có thể check lại đề không ạ?

3 tháng 5 2022

khôngn đăng lại

3 tháng 5 2022

c#ẹp.c#ẹp

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

17 tháng 5 2018

S=\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2018.2018}\)

Ta có: \(\dfrac{1}{5.5}< \dfrac{1}{4.5};\dfrac{1}{6.6}< \dfrac{1}{5.6};\dfrac{1}{7.7}< \dfrac{1}{6.7};...;\dfrac{1}{2018.2018}< \dfrac{1}{2017.2018}\)

\(\Rightarrow\) S<\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{2017.2018}\)

S<\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

S< \(\dfrac{1}{4}-\dfrac{1}{2018}< \dfrac{1}{4}\)

\(\Rightarrow\)S<\(\dfrac{1}{4}\)

Học tốt nhaok

1/31>1/40

1/32>1/40

...

1/40=1/40

=>1/31+1/32+...+1/40>1/40*10=1/4

1/41>1/50

1/42>1/50

...

1/50=1/50

=>1/41+1/42+...+1/50>10/50=1/5

1/51>1/60

1/52>1/60

...

1/60=1/60

=>1/51+1/52+...+1/60>10/60=1/6

=>S>1/4+1/5+1/6=3/5

1/31<1/30

1/32<1/30

...

1/40<1/30

=>1/31+1/32+...+1/40<1/30*10=1/3

1/41<1/40

1/42<1/40

...

1/50<1/40

=>1/41+1/42+...+1/50<10/40=1/4

1/51<1/50

1/52<1/50

...

1/60<1/50

=>1/51+1/52+...+1/60<10/50=1/5

=>S<1/3+1/4+1/5=4/5

16 tháng 4 2023

Ta có S = \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)⇒ S < \(\dfrac{1}{30}\cdot10+\dfrac{1}{40}\cdot10+\dfrac{1}{50}\cdot10=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)

Vậy S < \(\dfrac{4}{5}\)

4 tháng 5 2017

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)

=>S>1/40*10+1/50*10+1/60*10=3/5

 

S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)

=>S<1/30*10+1/40*10+1/50*10=4/5

=>3/5<S<4/5

\(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

...

\(\dfrac{1}{40}=\dfrac{1}{40}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}>\dfrac{1}{50}\)

\(\dfrac{1}{42}>\dfrac{1}{50}\)

...

\(\dfrac{1}{50}=\dfrac{1}{50}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}>\dfrac{1}{60}\)

\(\dfrac{1}{52}>\dfrac{1}{60}\)

...

\(\dfrac{1}{60}=\dfrac{1}{60}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{10}{60}=\dfrac{1}{6}\)

=>\(S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{3}{5}\)

\(\dfrac{1}{31}< \dfrac{1}{30}\)

\(\dfrac{1}{32}< \dfrac{1}{30}\)

...

\(\dfrac{1}{40}< \dfrac{1}{30}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}< \dfrac{1}{40}\)

\(\dfrac{1}{42}< \dfrac{1}{40}\)

...

\(\dfrac{1}{50}< \dfrac{1}{40}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{60}< \dfrac{1}{50}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

=>\(S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{4}{5}\)

=>\(\dfrac{3}{5}< S< \dfrac{4}{5}\)