Tính tổng:
3/1*3 + 3/3*5 + 3/5*7 + ... + 3/49*51
giúp mình nhé các bn ^-^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
Số số hạng của tổng A là: 50
Tổng A có giá trị là: (1 + 50) x 50 : 2 = 1275
---------------------------------------------------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng B là: 2 đơn vị
Số số hạng của tổng B là:
(49 - 1) : 2 + 1 = 25 (số hạng)
Tổng B mang giá trị là: (1 + 49) x 25 : 2 = 625
Đáp số: A = 1275
B = 625
\(A=1+2+3+...+50\)
Tổng của \(A\) là:
\(\left[\left(50-1\right):1+1\right].\left(50+1\right):2=1275\)
\(B=1+3+5+7+...+49\)
Tổng của \(B\) là:
\(\left[\left(49-1\right):2+1\right].\left(49+1\right):2=625.\)
\(Xét A = 1/(4.9)+1/(9.14)+1/(14.19)+...+1/(44.49)
-> 5A = 5/(4.9) + 5/(9.14) + 5/(14.19) + ... + 5/(44.49)
= 1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 + ... + 1/44 - 1/49
= 1/4 - 1/49 = 45/196 -> A = 9 / 196
Xét B = (−1−3−5−7−...−49)/89
= (1 + 3 + 5 + ... + 49) / -89
= 625 / -89
biểu thức đầu bài có giá trị: A.B = 9/196 * 625/-89 = - 5625 / 17444\)Xét A = 1/(4.9)+1/(9.14)+1/(14.19)+...+1/(44.49)
-> 5A = 5/(4.9) + 5/(9.14) + 5/(14.19) + ... + 5/(44.49)
= 1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 + ... + 1/44 - 1/49
= 1/4 - 1/49 = 45/196 -> A = 9 / 196
Xét B = (−1−3−5−7−...−49)/89
= (1 + 3 + 5 + ... + 49) / -89
= 625 / -89
biểu thức đầu bài có giá trị: A.B = 9/196 * 625/-89 = - 5625 / 17444
tick nha
Số số hạng trong dãy là :
(51-1):2+1=26(số)
Tổng đó là :
(51+1)x26:2=676
Đ/s:...
~HT~
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{5}{11}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)
\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=3.\left(\frac{1}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\right)\)
\(=3.\frac{1}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{3}\left(1-\frac{1}{51}\right)\)
\(=\frac{50}{51}\)
thanks bạn nha