Tìm x và y biết \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
<=> \(160+8xy=4x\)
<=> 40 + 2xy = x
<=> x(1-2y) = 40
Co x, y nguyên nên 1-2y cũng nguyên
Đến đây bạn xét các TH nhé
VD x = 2, 1 - 2y = 20 ; x = 1, 1 - 2y =40. x= -2, y = -20 vv....
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{20+xy}{4x}=\frac{1}{8}\) và 4x phải khác 0=> x khác 0
=>8(20+xy)=4x
=>160+8xy=4x
=> 40+2xy-x=0
=>40=x(1-2y) (1)
=>\(\frac{40}{x}=\frac{1-2y}{1}\) và x phải khác 0
=> x=1 và 1-2y=40=>2y=-39->y=-39/2
Thay vào (1) ta có:
40=x(1+39/2)
41/2 x=40
=>x=40:(41/2)= 80/41
ĐK: \(x\ne0\)
PT: \(\Leftrightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Leftrightarrow160+8xy=4x\)
\(\Leftrightarrow8xy-4x=-160\)
\(\Leftrightarrow x\left(8y-4\right)=-160\)
\(+y=\frac{1}{2}\)thì ta được \(0=-160\) (loại)
\(+y\ne\frac{1}{2}\) thì ta được \(x=-\frac{160}{8y-4}=-\frac{40}{2y-1}\) (nhận)
Vậy mới mọi \(y\ne\frac{1}{2}\) thì PT có cặp nghiệm \(\left(x;y\right)=\left(-\frac{40}{2y-1};y\right)\)
Còn nếu làm cách khác thì x, y phải nguyên mới được nhé
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
5/x = 1/8 - y/4 = 1-2y/8 <=> x = 5*8/1-2y
ta thấy 1-2y là số lẻ nên UCLN(8; 1-2y)=1 do đó x/8=5/1-2y
x,y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y =1 => x = -40
* 1-2y = 1 => y = 0 => x= 40
*1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x= 8
vậy có 4 cặp x,y nguyên ( -40,1) (40,0) (-8,-5) (8,5)
nhớ mk nhá
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
\(\Rightarrow\frac{20}{4x}+\frac{xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\left(20+xy\right).8=4x\)
\(\Rightarrow160+8xy=4x\)
\(\Rightarrow40+2xy=x\)
\(\Rightarrow40=x\left(1-2y\right)\)
\(\Rightarrow x\left(1-2y\right)\inƯ\left(40\right)\)
Đến đây bạn tự làm nhé!
ta có :\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
=>\(40=x\left(1-2y\right)\)
=>x và 1-2y là ước của 40 =1;40;5;8;20;2;10;4...Sau đó thay vào làm đk
Theo đề bài suy ra \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Leftrightarrow x=\frac{8}{1-2y}.5\)
Dễ thấy 1-2y là số lẻ nên ƯCLN(8;1-2y) = 1 \(\Rightarrow\frac{x}{8}=\frac{5}{1-2y}\)
; mà x, y nguyên khi 1-2y phải là ước của 5 <=> 1 - 2y \(\in\) {-1; 1; -5; 5}
- Xét 1-2y = -1 => y = 1 => x = -40
- Xét 1-2y = 1 => y = 0 => x = 40
- Xét 1-2y = -5 => y = 3 => x = -8
- Xét 1-2y = 5 => y = -2 => x = 8
Vậy có 4 cặp (x,y) nguyên (-40;1) ; (40;0) ; (-8;-5) ; (8;5)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x(1-2y)=5.8=40
do 1-2y là 1 số lẻ và là ước lẻ của 40
nên 1-2y ={-1;1;-5;5}
+)1-2y=-1 =>y=1
=>x=-40
+1-2y=1=>y=0
=>x=40
+)1-2y=-5 =>y=3
=>x=-8
+)1-2y=5=>y=-2
=>x=8
Vậy có 4 cặp (x;y) thỏa mãn bài toán là:...
^...^ ^_^
Ta có:
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\Rightarrow1-2y\) là ước lẻ của 40
Đáp số:
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow x=5\times4-8-5+1\)
\(\Rightarrow x=8\)
\(\Leftrightarrow y=5\times8\div4-8-1=1\)
\(\Rightarrow y=3\)
Vậy \(x=8\) \(y=1\)