x - y =9 với m là tham số .Tìm m để hệ phương trình x,y thỏa mãn 2x + y = 27
mx + (2m-1)y =69
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Cộng 2 pt theo vế có:
$3x=3m+3\Rightarrow x=m+1$
$y=x-(2m+1)=m+1-(2m+1)=-m$
Khi đó:
$(x+1)(y-3)<0$
$\Leftrightarrow (m+1+1)(-m-3)<0$
$\Leftrightarrow (m+2)(m+3)>0$
$\Leftrightarrow m>-2$ hoặc $m<-3$
Xét hệ x + m y = m + 1 1 m x + y = 2 m 2
Từ (2) ⇒ y = 2m – mx thay vào (1) ta được:
x + m (2m – mx) = m + 1
⇔ 2 m 2 – m 2 x + x = m + 1 ⇔ ( 1 – m 2 ) x = − 2 m 2 + m + 1
( m 2 – 1 ) x = 2 m 2 – m – 1 ( 3 )
Hệ phương trình đã cho có nghiệm duy nhất (3) có nghiệm duy nhất
m 2 – 1 ≠ 0 ⇔ m ≠ ± 1 ( * )
Khi đó hệ đã cho có nghiệm duy nhất x = 2 m + 1 m + 1 y = m m + 1
Ta có
x ≥ 2 y ≥ 1 ⇔ 2 m + 1 m + 1 ≥ 2 m m + 1 ≥ 1 ⇔ − 1 m + 1 ≥ 0 − 1 m + 1 ≥ 0 ⇔ m + 1 < 0 ⇔ m < − 1
Kết hợp với (*) ta được giá trị m cần tìm là m < −1
Đáp án: B
Ta có
3 x − y = 2 m + 1 x + 2 y = − m + 2 ⇔ 6 x − 2 y = 4 m + 2 x + 2 y = − m + 2 ⇔ 7 x = 3 m + 4 x + 2 y = − m + 2 ⇔ x = 3 m + 4 7 3 m + 4 7 + 2 y = − m + 2 ⇔ x = 3 m + 4 7 2 y = − 7 m + 14 7 − 3 m + 4 7 ⇔ x = 3 m + 4 7 y = − 5 m + 5 7
hệ phương trình có nghiệm duy nhất ( x ; y ) = 3 m + 4 7 ; − 5 m + 5 7
Để x – y = 1 thì 3 m + 4 7 − − 5 m + 5 7 = 1 ⇔ 8m – 1 = 7 ⇔ 8m = 8 m = 1
Vậy với m = 1 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x − y = 1
Đáp án: C
Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:
\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)
Thế vào pt đầu:
\(m.1+2.7=18\Rightarrow m=4\)
a. Với `m=1`, ta có HPT: \(\left\{{}\begin{matrix}x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-6\\3y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)
b. Theo đề bài `=>` \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx+2y=18\\x=1\\y=7\end{matrix}\right.\)
`=> m=4`
Kết hợp điều kiện đề bài và pt thứ 1 của hệ ta được:
\(\left\{{}\begin{matrix}x-y=9\\2x+y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=3\end{matrix}\right.\)
Thế \(x=12,y=3\) vào \(mx+\left(2m-1\right)y=69\)
\(\Rightarrow m.12+\left(2m-1\right).3=69\)
\(\Rightarrow12m+3m-3-69=0\)
\(\Rightarrow15m=72\)
\(\Rightarrow m=\dfrac{24}{5}\)