K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2023

loading...

18 tháng 1 2023

còn 1gp nữa là lên hạng r chúc mừng trc nhoa:3

24 tháng 2 2021

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

9 tháng 2 2023

\(A;D \in (O)=>OA=OD=>\triangle OAD\) cân tại \(O=>\widehat{A}=\widehat{ADO}\)

Xét `(O)` có: \(\widehat{A}=\widehat{CDB}\)     `(1)`

Xét \(\triangle DOC\) vuông tại `D` có: \(\widehat{BCD}+\hat{DOB}=90^{o}\)    `(2)`

Xét \(\triangle ADO\) có: \(\widehat{DOB}=\widehat{A}+\hat{ADO}=2\widehat{A}\) `(3)`

Từ \((1);(2);(3)=>\wide{BCD}+2\widehat{CDB}=90^{o}\)

11 tháng 4 2023

È là EF nha mng

 

loading...  loading...  loading...  loading...  loading...  loading...  

Gọi H là giao của d vói AC
=>H là trung điểm của AC và QH//AD

Xét ΔCAD có

H la trung điểm của AC

HQ//AD
=>Q là trung điểm của CD

Xét ΔCBD có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>B,M,Q thẳng hàng