Cho 3 đt a,b,c bt c cắt đt a và b lần lượt tại A và B.Một đt d(khác c)vuông góc với đt a tại C,đt cắt d cắt đt b tại D sao cho aAB=ABD=45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA
Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
\(A;D \in (O)=>OA=OD=>\triangle OAD\) cân tại \(O=>\widehat{A}=\widehat{ADO}\)
Xét `(O)` có: \(\widehat{A}=\widehat{CDB}\) `(1)`
Xét \(\triangle DOC\) vuông tại `D` có: \(\widehat{BCD}+\hat{DOB}=90^{o}\) `(2)`
Xét \(\triangle ADO\) có: \(\widehat{DOB}=\widehat{A}+\hat{ADO}=2\widehat{A}\) `(3)`
Từ \((1);(2);(3)=>\wide{BCD}+2\widehat{CDB}=90^{o}\)
Gọi H là giao của d vói AC
=>H là trung điểm của AC và QH//AD
Xét ΔCAD có
H la trung điểm của AC
HQ//AD
=>Q là trung điểm của CD
Xét ΔCBD có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>B,M,Q thẳng hàng
còn 1gp nữa là lên hạng r chúc mừng trc nhoa:3