Cho C=\(\frac{5}{5.8.11}\)+ \(\frac{5}{8.11.14}\)+..............+\(\frac{5}{302.305.308}\)
Chứng minh C< \(\frac{1}{48}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)
\(\Rightarrow\frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)
\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)
\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{8.11}+...+\frac{1}{302.305}-\frac{1}{305.308}\)
\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\)
Lời giải:
\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.205.308}\)
\(\Rightarrow \frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)
\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)
\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{11.14}+...+\frac{1}{302.305}-\frac{1}{305.308}\)
\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\)
\(\Rightarrow B< \frac{1}{40}.\frac{5}{6}\Leftrightarrow B< \frac{1}{48}\)
\(C=\dfrac{5}{5\cdot8\cdot11}+\dfrac{5}{8\cdot11\cdot14}+...+\dfrac{5}{302\cdot305\cdot308}\\ =\dfrac{5}{6}\cdot\left(\dfrac{6}{5\cdot8\cdot11}+\dfrac{6}{8\cdot11\cdot14}+...+\dfrac{6}{302\cdot305\cdot308}\right)\\ =\dfrac{5}{6}\cdot\left(\dfrac{1}{5\cdot8}-\dfrac{1}{8\cdot11}+\dfrac{1}{8\cdot11}-\dfrac{1}{11\cdot14}+...+\dfrac{1}{302\cdot305}-\dfrac{1}{305\cdot308}\right)\\ =\dfrac{5}{6}\cdot\left(\dfrac{1}{40}-\dfrac{1}{305\cdot308}\right)\\ =\dfrac{5}{6}\cdot\dfrac{1}{40}-\dfrac{5}{6}\cdot\dfrac{1}{305\cdot308}\\ =\dfrac{1}{48}-\dfrac{5}{6\cdot305\cdot308}\\ \dfrac{5}{6\cdot305\cdot308}>0\Rightarrow\dfrac{1}{48}-\dfrac{5}{6\cdot305\cdot308}< \dfrac{1}{48}\)
Bạn chép đề sai rồi, mình sửa lại đề và làm luôn nhé :
Ta có :
\(D=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)
\(\Rightarrow D=\frac{5}{6}.\left(\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\right)\)
\(\Rightarrow D=\frac{5}{6}.\left(\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}\frac{1}{11.14}+...+\frac{1}{302.305}-\frac{1}{305.308}\right)\)
\(\Rightarrow D=\frac{5}{6}.\left(\frac{1}{5.8}-\frac{1}{305.308}\right)\)
\(\Rightarrow D=\frac{5}{6}.\frac{1}{40}-\frac{5}{6}.\frac{1}{305.308}\)
\(\Rightarrow D=\frac{1}{48}-\frac{5}{6.305.308}< \frac{1}{48}\) (đpcm )
Ta gọi biểu thức đó là D
\(D=\frac{5}{2}\left[\frac{1}{5.8}-\frac{1}{8.11}+....+\frac{1}{302.305}-\frac{1}{305.308}\right]\)
\(D=\frac{5}{2}.\left[\frac{1}{5.8}-\frac{1}{305.308}\right]\)
\(D=\frac{4695}{75152}\)