Cho tam giác OBC có OB = 2cm, OC = 3cm. Trên tia đối của OB lấy điểm A sao cho OA = 2,5cm. Đường thẳng đi qua A và song song với BC cắt OC tại D. Tính OD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ DC//AB, áp dụng hệ quả định lý Ta-let chứng minh được: OC = 4cm và DC =6cm.
b) Áp dụng hệ quả Định lý Ta-lét cho tam giác AFB tính được F D F A = D C A B = 1 3
Đề sai rồi bạn vì OA+OB=AB là trái với bất đẳng thức tam giác rồi
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
a) Xét ΔDOC và ΔBOA có
\(\widehat{DOC}=\widehat{BOA}\)(hai góc đối đỉnh)
\(\widehat{DCO}=\widehat{BAO}\)(hai góc so le trong, DC//AB)
Do đó: ΔDOC\(\sim\)ΔBOA(g-g)
Suy ra: \(\dfrac{OD}{OB}=\dfrac{OC}{OA}=\dfrac{DC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{1}{3}=\dfrac{OC}{12}=\dfrac{CD}{18}\)
\(\Leftrightarrow\left\{{}\begin{matrix}OC=\dfrac{12}{3}=4\left(cm\right)\\CD=\dfrac{18}{3}=6\left(cm\right)\end{matrix}\right.\)
Vậy: OC=4cm; CD=6cm
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
Xét ΔOBC và ΔOAD có
góc OBC=góc OAD
góc BOC=góc AOD
DO đo: ΔOBC đồng dạng với ΔOAD
=>OB/OA=OC/OD
=>2/2,5=3/OD
=>3/OD=4/5
=>OD=3:4/5=3*5/4=15/4(cm)